整个散列过程其实就是两步。

    1. 在存储时,通过散列函数计算记录的散列地址,并按此散列地址存储该记录。就像张三丰我们就让他在体育馆,那如果是‘爱因斯坦’我们让他在图书馆,如果是‘居里夫人’,那就让她在化学实验室。总之,不管什么记录,我们都需要用同一个散列函数计算出地址再存储。
    2. 当查找记录时,我们通过同样的散列函数计算记录的散列地址,按此散列地址访问该记录。说起来很简单,在哪存的,上哪去找,由于存取用的是同一个散列函数,因此结果当然也是相同的。

    所以说,散列技术既是一种存储方法,也是一种查找方法。然而它与线性表、树、图等结构不同的是,前面几种结构,数据元素之间都存在某种逻辑关系,可以用连线图示表示出来,而散列技术的记录之间不存在什么逻辑关系,它只与关键字有关联。因此,散列主要是面向查找的存储结构。

    散列技术最适合的求解问题是查找与给定值相等的记录。对于查找来说,简化了比较过程,效率就会大大提高。但万事有利就有弊,散列技术不具备很多常规数据结构的能力。

    比如那种同样的关键字,它能对应很多记录的情况,却不适合用散列技术。一个班级几十个学生,他们的性别有男有女,你用关键“男”去查找,对应的有许多学生的记录,这显然是不合适的。只有如用班级学生的学号或者身份证号来散列存储,此时一个号码唯一对应一个学生才比较合适。

    同样散列表也不适合范围查找,比如查找一个班级18~22岁的同学,在散列表中没法进行。想获得表中记录的排序也不可能,像最大值、最小值等结果也都无法从散列表中计算出来。

    我们说了这么多,散列函数应该如何设计?这个我们需要重点来讲解,总之设计一个简单、均匀、存储利用率高的散列函数是散列技术中最关键的问题。

    另一个问题是冲突。在理想的情况下,每一个关键字,通过散列函数计算出来的地址都是不一样的,可现实中,这只是一个理想。我们时常会碰到两个关键字key 1 ≠key 2 ,但是却有f(key 1 )=f(key 2 ),这种现象我们称为冲突(collision),并把key 1 和key 2 称为这个散列函数的同义词(synonym)。出现了冲突当然非常糟糕,那将造成数据查找错误。尽管我们可以通过精心设计的散列函数让冲突尽可能的少,但是不能完全避免。于是如何处理冲突就成了一个很重要的课题,这在我们后面也需 要详细讲解。