Redis

Redis占用内存大小

都知道Redis是基于内存的key-value数据库,因为系统的内存大小有限,所以在使用Redis的时候可以配置Redis能使用的最大的内存大小。

1、通过配置文件配置

通过在Redis安装目录下面的redis.conf配置文件中添加以下配置设置内存大小

  1. //设置Redis最大占用内存大小为100M
  2. maxmemory 100mb

redis的配置文件不一定使用的是安装目录下面的redis.conf文件,启动redis服务的时候是可以传一个参数指定redis的配置文件的

2、通过命令修改

Redis支持运行时通过命令动态修改内存大小

  1. //设置Redis最大占用内存大小为100M
  2. 127.0.0.1:6379> config set maxmemory 100mb
  3. //获取设置的Redis能使用的最大内存大小
  4. 127.0.0.1:6379> config get maxmemory

如果不设置最大内存大小或者设置最大内存大小为0,在64位操作系统下不限制内存大小,在32位操作系统下最多使用3GB内存

Redis的内存淘汰

既然可以设置Redis最大占用内存大小,那么配置的内存就有用完的时候。那在内存用完的时候,还继续往Redis里面添加数据不就没内存可用了吗?
实际上Redis定义了几种策略用来处理这种情况:

  • noeviction(默认策略):对于写请求不再提供服务,直接返回错误(DEL请求和部分特殊请求除外)
  • allkeys-lru:从所有key中使用LRU算法进行淘汰
  • volatile-lru:从设置了过期时间的key中使用LRU算法进行淘汰
  • allkeys-random:从所有key中随机淘汰数据
  • volatile-random:从设置了过期时间的key中随机淘汰
  • volatile-ttl:在设置了过期时间的key中,根据key的过期时间进行淘汰,越早过期的越优先被淘汰

当使用volatile-lru、volatile-random、volatile-ttl这三种策略时,如果没有key可以被淘汰,则和noeviction一样返回错误

如何获取及设置内存淘汰策略

获取当前内存淘汰策略:

  1. 127.0.0.1:6379> config get maxmemory-policy

通过配置文件设置淘汰策略(修改redis.conf文件):
maxmemory-policy allkeys-lru

通过命令修改淘汰策略:

  1. 127.0.0.1:6379> config set maxmemory-policy allkeys-lru

LRU算法

什么是LRU?

上面说到了Redis可使用最大内存使用完了,是可以使用LRU算法进行内存淘汰的,那么什么是LRU算法呢?
LRU(Least Recently Used),即最近最少使用,是一种缓存置换算法。
在使用内存作为缓存的时候,缓存的大小一般是固定的。当缓存被占满,这个时候继续往缓存里面添加数据,就需要淘汰一部分老的数据,释放内存空间用来存储新的数据。
这个时候就可以使用LRU算法了。其核心思想是:如果一个数据在最近一段时间没有被用到,那么将来被使用到的可能性也很小,所以就可以被淘汰掉。

使用java实现一个简单的LRU算法

  1. public class LRUCache<k, v> {
  2. //容量
  3. private int capacity;
  4. //当前有多少节点的统计
  5. private int count;
  6. //缓存节点
  7. private Map<k, node> nodeMap;
  8. private Node head;
  9. private Node tail;
  10. public LRUCache(int capacity) {
  11. if (capacity < 1) {
  12. throw new IllegalArgumentException(String.valueOf(capacity));
  13. }
  14. this.capacity = capacity;
  15. this.nodeMap = new HashMap<>();
  16. //初始化头节点和尾节点,利用哨兵模式减少判断头结点和尾节点为空的代码
  17. Node headNode = new Node(null, null);
  18. Node tailNode = new Node(null, null);
  19. headNode.next = tailNode;
  20. tailNode.pre = headNode;
  21. this.head = headNode;
  22. this.tail = tailNode;
  23. }
  24. public void put(k key, v value) {
  25. Node node = nodeMap.get(key);
  26. if (node == null) {
  27. if (count >= capacity) {
  28. //先移除一个节点
  29. removeNode();
  30. }
  31. node = new Node<>(key, value);
  32. //添加节点
  33. addNode(node);
  34. } else {
  35. //移动节点到头节点
  36. moveNodeToHead(node);
  37. }
  38. }
  39. public Node get(k key) {
  40. Node node = nodeMap.get(key);
  41. if (node != null) {
  42. moveNodeToHead(node);
  43. }
  44. return node;
  45. }
  46. private void removeNode() {
  47. Node node = tail.pre;
  48. //从链表里面移除
  49. removeFromList(node);
  50. nodeMap.remove(node.key);
  51. count--;
  52. }
  53. private void removeFromList(Node node) {
  54. Node pre = node.pre;
  55. Node next = node.next;
  56. pre.next = next;
  57. next.pre = pre;
  58. node.next = null;
  59. node.pre = null;
  60. }
  61. private void addNode(Node node) {
  62. //添加节点到头部
  63. addToHead(node);
  64. nodeMap.put(node.key, node);
  65. count++;
  66. }
  67. private void addToHead(Node node) {
  68. Node next = head.next;
  69. next.pre = node;
  70. node.next = next;
  71. node.pre = head;
  72. head.next = node;
  73. }
  74. public void moveNodeToHead(Node node) {
  75. //从链表里面移除
  76. removeFromList(node);
  77. //添加节点到头部
  78. addToHead(node);
  79. }
  80. class Node<k, v> {
  81. k key;
  82. v value;
  83. Node pre;
  84. Node next;
  85. public Node(k key, v value) {
  86. this.key = key;
  87. this.value = value;
  88. }
  89. }
  90. }

上面这段代码实现了一个简单的LUR算法,代码很简单,也加了注释,仔细看一下很容易就看懂。

LRU在Redis中的实现

近似LRU算法

Redis使用的是近似LRU算法,它跟常规的LRU算法还不太一样。
近似LRU算法通过随机采样法淘汰数据,每次随机出5(默认)个key,从里面淘汰掉最近最少使用的key。
可以通过maxmemory-samples参数修改采样数量:例:maxmemory-samples 10 maxmenory-samples配置的越大,淘汰的结果越接近于严格的LRU算法
Redis为了实现近似LRU算法,给每个key增加了一个额外增加了一个24bit的字段,用来存储该key最后一次被访问的时间。

Redis3.0对近似LRU的优化

Redis3.0对近似LRU算法进行了一些优化。新算法会维护一个候选池(大小为16),池中的数据根据访问时间进行排序,第一次随机选取的key都会放入池中
随后每次随机选取的key只有在访问时间小于池中最小的时间才会放入池中,直到候选池被放满。
当放满后,如果有新的key需要放入,则将池中最后访问时间最大(最近被访问)的移除。
当需要淘汰的时候,则直接从池中选取最近访问时间最小(最久没被访问)的key淘汰掉就行。

LRU算法的对比

可以通过一个实验对比各LRU算法的准确率,先往Redis里面添加一定数量的数据n,使Redis可用内存用完,再往Redis里面添加n/2的新数据,这个时候就需要淘汰掉一部分的数据
如果按照严格的LRU算法,应该淘汰掉的是最先加入的n/2的数据。
生成如下各LRU算法的对比图(图片来源):
内存耗尽后,Redis会发生什么? - 图1
可以看到图中有三种不同颜色的点:

  • 浅灰色是被淘汰的数据
  • 灰色是没有被淘汰掉的老数据
  • 绿色是新加入的数据

能看到Redis3.0采样数是10生成的图最接近于严格的LRU。而同样使用5个采样数,Redis3.0也要优于Redis2.8。

LFU算法

LFU算法是Redis4.0里面新加的一种淘汰策略。它的全称是Least Frequently Used
它的核心思想是根据key的最近被访问的频率进行淘汰,很少被访问的优先被淘汰,被访问的多的则被留下来。
LFU算法能更好的表示一个key被访问的热度。假如使用的是LRU算法,一个key很久没有被访问到,只刚刚是偶尔被访问了一次,那么它就被认为是热点数据,不会被淘汰,而有些key将来是很有可能被访问到的则被淘汰了。
如果使用LFU算法则不会出现这种情况,因为使用一次并不会使一个key成为热点数据。
LFU一共有两种策略:

  • volatile-lfu:在设置了过期时间的key中使用LFU算法淘汰key
  • allkeys-lfu:在所有的key中使用LFU算法淘汰数据 :::tips 设置使用这两种淘汰策略跟前面讲的一样,不过要注意的一点是这两周策略只能在Redis4.0及以上设置,如果在Redis4.0以下设置会报错 :::