最近有一个比较火的项目,是将图片转换成黑白的简笔画,非常有意思,笔者尝试运行了一下这个项目,在此做一些分享,由于网络等原因,我会将该项目涉及的资源分享出来,希望能够得到大家的支持。
首先是下载这个项目
git clone https://github.com/vijishmadhavan/ArtLine.git ArtLine
然后安装一些必要的库
pip install -r colab_requirements.txt
运行主要的代码,该代码可以将一张图片(图片 url 或者本地图片的格式)转换成简笔画效果。
在运行这个项目的时候,会出现几个问题:第一,由于网络问题,会导致模型下载失败,所以建议先下载下来,笔者已经将模型下载下来,大家可以在文末获取;第二:该项目最开始的代码仅支持 url 图片预测,笔者进行改进并将预测的结果进行展示和保存。
import fastai
from fastai.vision import *
from fastai.utils.mem import *
from fastai.vision import open_image, load_learner, image, torch
import numpy as np
import urllib.request
import PIL.Image
from io import BytesIO
import torchvision.transforms as T
from PIL import Image
import requests
from io import BytesIO
import fastai
from fastai.vision import *
from fastai.utils.mem import *
from fastai.vision import open_image, load_learner, image, torch
import numpy as np
import urllib.request
import PIL.Image
from io import BytesIO
import torchvision.transforms as T
import cv2
class FeatureLoss(nn.Module):
def __init__(self, m_feat, layer_ids, layer_wgts):
super().__init__()
self.m_feat = m_feat
self.loss_features = [self.m_feat[i] for i in layer_ids]
self.hooks = hook_outputs(self.loss_features, detach=False)
self.wgts = layer_wgts
self.metric_names = ['pixel',] + [f'feat_{i}' for i in range(len(layer_ids))
] + [f'gram_{i}' for i in range(len(layer_ids))]
def make_features(self, x, clone=False):
self.m_feat(x)
return [(o.clone() if clone else o) for o in self.hooks.stored]
def forward(self, input, target):
out_feat = self.make_features(target, clone=True)
in_feat = self.make_features(input)
self.feat_losses = [base_loss(input,target)]
self.feat_losses += [base_loss(f_in, f_out)*w
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]
self.feat_losses += [base_loss(gram_matrix(f_in), gram_matrix(f_out))*w**2 * 5e3
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]
self.metrics = dict(zip(self.metric_names, self.feat_losses))
return sum(self.feat_losses)
def __del__(self): self.hooks.remove()
# MODEL_URL = "https://www.dropbox.com/s/starqc9qd2e1lg1/ArtLine_650.pkl?dl=1"
# urllib.request.urlretrieve(MODEL_URL, "ArtLine_650.pkl")
path = Path(".")
learn=load_learner(path, 'ArtLine_650.pkl')
################### STRAT 通过 url 获取图片并进行预测 ###################
# url = 'https://pic2.zhimg.com/v2-69fad2bf3b67c2418d6d26fb9f3277b0_1440w.jpg'
# response = requests.get(url)
# img = PIL.Image.open(BytesIO(response.content)).convert("RGB")
################### END 通过 url 获取图片并进行预测 ###################
################### STRAT 通过读取本地图片并进行预测 ###################
img = PIL.Image.open("4871730978936137066.jpg").convert("RGB")
################### END 通过读取本地图片并进行预测 ###################
img_t = T.ToTensor()(img)
img_fast = Image(img_t)
show_image(img_fast, figsize=(8,8), interpolation='nearest');
p,img_hr,b = learn.predict(img_fast)
Image(img_hr).show(figsize=(8,8)) # 显示图片
p.save("result.jpg")# 保存结果