
最近有一个比较火的项目,是将图片转换成黑白的简笔画,非常有意思,笔者尝试运行了一下这个项目,在此做一些分享,由于网络等原因,我会将该项目涉及的资源分享出来,希望能够得到大家的支持。
首先是下载这个项目
git clone https://github.com/vijishmadhavan/ArtLine.git ArtLine
然后安装一些必要的库
pip install -r colab_requirements.txt
运行主要的代码,该代码可以将一张图片(图片 url 或者本地图片的格式)转换成简笔画效果。
在运行这个项目的时候,会出现几个问题:第一,由于网络问题,会导致模型下载失败,所以建议先下载下来,笔者已经将模型下载下来,大家可以在文末获取;第二:该项目最开始的代码仅支持 url 图片预测,笔者进行改进并将预测的结果进行展示和保存。
import fastaifrom fastai.vision import *from fastai.utils.mem import *from fastai.vision import open_image, load_learner, image, torchimport numpy as npimport urllib.requestimport PIL.Imagefrom io import BytesIOimport torchvision.transforms as Tfrom PIL import Imageimport requestsfrom io import BytesIOimport fastaifrom fastai.vision import *from fastai.utils.mem import *from fastai.vision import open_image, load_learner, image, torchimport numpy as npimport urllib.requestimport PIL.Imagefrom io import BytesIOimport torchvision.transforms as Timport cv2class FeatureLoss(nn.Module):def __init__(self, m_feat, layer_ids, layer_wgts):super().__init__()self.m_feat = m_featself.loss_features = [self.m_feat[i] for i in layer_ids]self.hooks = hook_outputs(self.loss_features, detach=False)self.wgts = layer_wgtsself.metric_names = ['pixel',] + [f'feat_{i}' for i in range(len(layer_ids))] + [f'gram_{i}' for i in range(len(layer_ids))]def make_features(self, x, clone=False):self.m_feat(x)return [(o.clone() if clone else o) for o in self.hooks.stored]def forward(self, input, target):out_feat = self.make_features(target, clone=True)in_feat = self.make_features(input)self.feat_losses = [base_loss(input,target)]self.feat_losses += [base_loss(f_in, f_out)*wfor f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]self.feat_losses += [base_loss(gram_matrix(f_in), gram_matrix(f_out))*w**2 * 5e3for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]self.metrics = dict(zip(self.metric_names, self.feat_losses))return sum(self.feat_losses)def __del__(self): self.hooks.remove()# MODEL_URL = "https://www.dropbox.com/s/starqc9qd2e1lg1/ArtLine_650.pkl?dl=1"# urllib.request.urlretrieve(MODEL_URL, "ArtLine_650.pkl")path = Path(".")learn=load_learner(path, 'ArtLine_650.pkl')################### STRAT 通过 url 获取图片并进行预测 #################### url = 'https://pic2.zhimg.com/v2-69fad2bf3b67c2418d6d26fb9f3277b0_1440w.jpg'# response = requests.get(url)# img = PIL.Image.open(BytesIO(response.content)).convert("RGB")################### END 通过 url 获取图片并进行预测 ###################################### STRAT 通过读取本地图片并进行预测 ###################img = PIL.Image.open("4871730978936137066.jpg").convert("RGB")################### END 通过读取本地图片并进行预测 ###################img_t = T.ToTensor()(img)img_fast = Image(img_t)show_image(img_fast, figsize=(8,8), interpolation='nearest');p,img_hr,b = learn.predict(img_fast)Image(img_hr).show(figsize=(8,8)) # 显示图片p.save("result.jpg")# 保存结果
