https://pytorch.org/docs/stable/tensorboard.html
from torch.utils.tensorboard import SummaryWriterimport numpy as npwriter = SummaryWriter() # 创建一个记录器'''add_scalar(tag, scalar_value, global_step=None, walltime=None)- tag:数据标签名- scalar_value:记录值 (python:float or string/blobname)- global_step:记录第几个step'''for n_iter in range(100):writer.add_scalar('Loss/train', np.random.random(), n_iter)writer.add_scalar('Loss/test', np.random.random(), n_iter)writer.add_scalar('Accuracy/train', np.random.random(), n_iter)writer.add_scalar('Accuracy/test', np.random.random(), n_iter)

from torch.utils.tensorboard import SummaryWriterwriter = SummaryWriter()r = 5for i in range(100):writer.add_scalars('run_14h', {'xsinx':i*np.sin(i/r),'xcosx':i*np.cos(i/r),'tanx': np.tan(i/r)}, i)writer.close()# This call adds three values to the same scalar plot with the tag# 'run_14h' in TensorBoard's scalar section.

