VOC2007 数据集作为演示
环境准备
https://github.com/FLyingLSJ/yolov5.git
https://gitee.com/Flying_2016/yolov5.git # 码云,下载速度比较快
conda create -n yolo python=3.7 # 创建一个虚拟环境
cd yolov5
# 安装依赖,用清华源
pip install -qr requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple # install dependencies
准备数据
数据集文件结构如下:
拆分成训练集和测试集,images 文件夹是训练集和测试集的图片(本次使用的是 VOC2007 数据集),按照官方的拆分来拆分成训练集和验证集。
labels 文件夹是训练集和测试集的标注文件(txt 文件)格式如下:
注意:图片名和标注名需要一一对应
YOLOv5 与 YOLOv3 在数据集的文件结构上是有差异的
路径构建好后,修改 data 文件夹下 voc.yaml 配置文件
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC/
# Download command: bash ./data/get_voc.sh
# Train command: python train.py --data voc.yaml
# Default dataset location is next to /yolov5:
# /parent_folder
# /VOC
# /yolov5
# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: /openbayes/home/yolov5/data/images/train # 16551 images # 改成自己的路径
val: /openbayes/home/yolov5/data/images/val/ # 4952 images
# number of classes
nc: 20
# class names
names: ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog',
'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor']
模型选择
model 文件夹下的模型配置文件,我们使用的是 yolov5s.yaml 并用预训练模型进行训练
# parameters
nc: 20 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
# anchors
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
# YOLOv5 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Focus, [64, 3]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, BottleneckCSP, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 9, BottleneckCSP, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, BottleneckCSP, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 1, SPP, [1024, [5, 9, 13]]],
[-1, 3, BottleneckCSP, [1024, False]], # 9
]
# YOLOv5 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, BottleneckCSP, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
训练
python train.py --img 640 --batch 32 --epochs 30 --data ./data/voc.yaml --cfg ./models/yolov5s.yaml --weights 'weights/yolov5s.pt'
30 个轮次差不多用了 40 分钟
测试
python test.py --weights tf_log/exp0/weights/best.pt --data data/voc.yaml --img 640
查看 测试集上 mAP 等指标信息
可视化
runs/exp0 文件下可以查看训练的各种指标信息