基本知识

  • 灰度图像的存储方式:
    OpenCV Python 系列教程3 - Core 组件 - 图1
  • 多通道图像存储方式
    OpenCV Python 系列教程3 - Core 组件 - 图2

OpenCV 中的通道存储为 BGR

像素值的存储方式

  • RGB 模式,显示设备采用这种模式
  • HSV、HLS 将颜色分解成色调、饱和度和亮度/明度
  • YCrCb 在 JPEG 图像格式中广泛使用
  • CIE L_a_b* 是一种感知上均匀的颜色空间,它适用来度量两个颜色之间的距离

图片的基本操作

学习目标:

  • 访问像素值并修改
  • 访问图片属性
  • 设置图像区域(ROI)
  • 拆分、合并图像

这一节主要大部分涉及 Numpy 库的使用

访问并且修改像素值

  1. import cv2
  2. import numpy as np
  1. # 加载一个彩色图
  2. img = cv2.imread("img.jpg")
  3. img.shape
  1. (150, 220, 3)
  1. px = img[100, 100]
  2. print(px)
  3. blue = img[100, 100, 0]
  4. print(blue)
  1. [ 85 180 173]
  2. 85
  1. # 修改特定的像素
  2. img[100, 100] = [255, 255, 255]
  3. print(img[100, 100])
  4. # 这种修改每个像素的做法效率很低
  1. [255 255 255]

最好使用下面这种方法

  1. # 获取 RED 通道值
  2. img.item(10, 10, 1)
  3. # 修改
  4. img.itemset((10, 10, 2), 100)
  5. img.item(10, 10, 2)
  1. 100

颜色空间缩减

若是单通道的像素,像素有 256(0-255)个值,若是三通道,则颜色数就更多(一千六百多万种),如此多的颜色进行处理,会对算法的性能造成影响。这些颜色中,有代表性的颜色只是小部分。

颜色空间缩减(color space reduction)可以大大降低运算复杂度,具体做法是:

  • 0-9 范围的像素值为 0;
  • 10-19 范围像素值为 10;
  • 以此类推

算法实现步骤:

  1. 遍历图像矩阵的每个像素
  2. 根据公式:$I{new} = (I{old} / 10) * 10$
  1. img = cv2.imread("img.jpg", 0) # img.shape = 150*220
  2. img_new = np.array([i for i in map(lambda x:(x//10)*10, img)])
  3. cv2.imshow("img", img)
  4. cv2.imshow("img_new", img_new)
  5. cv2.waitKey(0)
  6. cv2.destroyAllWindows()
  7. # 统计不同元素的个数
  8. np.unique(img),np.unique(img_new)
  1. (array([ 21, 26, 28, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43,
  2. 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
  3. 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
  4. 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82,
  5. 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
  6. 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
  7. 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121,
  8. 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134,
  9. 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147,
  10. 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160,
  11. 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173,
  12. 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186,
  13. 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199,
  14. 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
  15. 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225,
  16. 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238,
  17. 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251,
  18. 252, 253, 254, 255], dtype=uint8),
  19. array([ 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140,
  20. 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250], dtype=uint8))

运行结果,从肉眼来看,差别不大

OpenCV Python 系列教程3 - Core 组件 - 图3

获取图像的属性

  1. img;
  1. img.shape
  2. # 若是彩色图像,则返回元组 1*3
  3. # 若是灰色图像,则返回元组 1*2 只有行和列
  4. # 此方法可以用来判断是否为彩色图像
  1. (150, 220)
  1. # 所有像素的总和即上面的元组值相乘
  2. img.size
  1. 33000
  1. # 图像的数据类型
  2. img.dtype
  1. dtype('uint8')

img.dtype 在调试时非常重要,因为大部分错误是因为无效的数据类型引起的

感兴趣区域(ROI)

该部分的功能是对图像的一小部分区域进行处理(我们感兴趣的那部分),可以减少处理时间,增加精度,给图像处理带来便利。

  1. img = cv2.imread("messi5.jpg")
  2. cv2.imshow("image_init", img)
  3. ball = img[280:340, 330:390]
  4. img[273:333, 100:160] = ball
  5. cv2.imshow("image_roi", img)
  6. k = cv2.waitKey(0) & 0xFF
  7. if k == 27:
  8. cv2.destroyAllWindows()

本例是对找到图像中球的位置,并复制一个放在另外一个地方,注意看的话,你会发现复制的球是一个矩形,看起来并不协调?
OpenCV Python 系列教程3 - Core 组件 - 图4

拆分、合并图像通道

  1. # 拆分每个通道
  2. b,g,r = cv2.split(img) # 或者 b = img[:, :, 0]
  3. # 把各个通道合并起来
  4. img = cv2.merge((b,g,r))
  1. # 让红色通道置零,可以不用拆分红色通道,直接置零
  2. img[:, :, 2] = 0

cv2.split() 对系统来说开销很大,所以只在需要使用的时候再使用,使用 Numpy 索引的方法更有效

为图像创建边框(填充)

cv2.copyMakeBorder(): 可以为图像创建边框它在 卷积运算,零填充等方面有更多的应用

  1. import cv2
  2. import numpy as np
  3. from matplotlib import pyplot as plt
  4. BLUE = [255, 0, 0]
  5. img1 = cv2.imread('opencv-logo.png')
  6. replicate = cv2.copyMakeBorder(
  7. img1, 10, 10, 10, 10, cv2.BORDER_REPLICATE) # 最后一个元素的复制
  8. reflect = cv2.copyMakeBorder(img1, 10, 10, 10, 10, cv2.BORDER_REFLECT) # 边框的镜面
  9. reflect101 = cv2.copyMakeBorder(
  10. img1, 10, 10, 10, 10, cv2.BORDER_REFLECT_101) # 同上,但有细微变化
  11. wrap = cv2.copyMakeBorder(img1, 10, 10, 10, 10, cv2.BORDER_WRAP)
  12. # 添加一个固定颜色的边框,因为 matpltlib 和 opencv 颜色显示不一样,所有图标的红色和蓝色互换了
  13. constant = cv2.copyMakeBorder(
  14. img1, 10, 10, 10, 10, cv2.BORDER_CONSTANT, value=BLUE)
  15. plt.subplot(231), plt.imshow(img1, 'gray'), plt.title('ORIGINAL')
  16. plt.subplot(232), plt.imshow(replicate, 'gray'), plt.title('REPLICATE')
  17. plt.subplot(233), plt.imshow(reflect, 'gray'), plt.title('REFLECT')
  18. plt.subplot(234), plt.imshow(reflect101, 'gray'), plt.title('REFLECT_101')
  19. plt.subplot(235), plt.imshow(wrap, 'gray'), plt.title('WRAP')
  20. plt.subplot(236), plt.imshow(constant, 'gray'), plt.title('CONSTANT')
  21. plt.show()

OpenCV Python 系列教程3 - Core 组件 - 图5

函数说明

copyMakeBorder(src, top, bottom, left, right, borderType[, dst[, value]]) -> dst

  • src: 输入图片
  • top, bottom, left, right: 上下左右的宽度
  • borderType: 边框类型,多个可以选择 参见

更多资料

本节原文

图像对比度、亮度值调整

学习目标:

  • 用 OpenCV 进行图像对比度、亮度的动态调整

理论依据

一般的图像处理算子都是一个函数,它接受一个或多个输入图像,并产生输出图像。算子的一般形式:$g(x) = h(f(x))$ 或者 $g(x) = h(f_0(x)···f_n(x))$

图像亮度和对比度的调整操作,属于图像操作中的点操作。点操作的特点:仅仅根据输入像素值(有时可加上某些全局信息或参数),来计算相应的输出像素值。这类算子包括:亮度(brightness)、对比度(contrast)调整、颜色校正(colorcorrection)、变换(transformations)。

常见的点操作(或说点算子)是乘上一个常数(对应对比度发调节)和加上一个常数(对应亮度的调节)。公式为:$g(x)=a*f(x)+b$
各个参数的含义:

  • 参数 f(x) 表示源图像像素
  • 参数 g(x) 表示输出图像像素
  • 参数 a (需要满足 a>0 )被称为增益(gain),控制图像的对比度
  • 参数 b 称为偏置(bias),控制图像的亮度

公式改写:$g(i, j)=a*f(i, j)+b$
即对图像的 i 行 j 列的像素进行操作。(对所有的像素进行操作)

案例(利用轨迹条调节图像的亮度和对比度)

  1. import numpy as np
  2. import cv2
  3. from skimage import img_as_int
  4. def nothing(x):
  5. pass
  6. # 对比度和亮度调节函数
  7. def adjust_bright_contrast(img, a=1, b=0):
  8. new_img = np.zeros(img.shape, dtype=img.dtype)
  9. for b in range(img.shape[0]):
  10. for g in range(img.shape[1]):
  11. for r in range(img.shape[2]):
  12. new_img[b, g, r] = np.clip(a*img[b, g, r]+b, 0, 255)
  13. return new_img
  14. # 使用轨迹条应该先创建一个窗口,因为
  15. cv2.namedWindow("image")
  16. cv2.createTrackbar("bright", "image", 0, 300, nothing)
  17. cv2.createTrackbar("contrast", "image", 0, 255, nothing)
  18. img = cv2.imread("img.jpg")
  19. new_img = np.zeros(img.shape, dtype=img.dtype)
  20. while(1):
  21. cv2.imshow("image", new_img)
  22. k = cv2.waitKey(1) & 0xFF
  23. if k == 27:
  24. break
  25. brightness = cv2.getTrackbarPos("bright", "image")
  26. contrast = cv2.getTrackbarPos("contrast", "image")
  27. new_img[:] = adjust_bright_contrast(img, brightness*0.01, contrast)
  28. cv2.destroyAllWindows()

运行结果:OpenCV Python 系列教程3 - Core 组件 - 图6
这个方式运行起来很慢,因为里面有三层循环

离散傅立叶变换

待学习

图像的算术运算

学习目标:

  • 图像的加法、减法、位运算
  • cv2.add(), cv2.addWeighted()

图像加法

cv2.add() 使用该函数操作是 Numpy 操作,两个图片应该要有一样的数据类型和深度,否则第二个图像只能是标量值。

  1. x = np.uint8([250])
  2. y = np.uint8([10])
  3. z = np.uint8([255])
  4. print("opencv add operation:", cv2.add(x, y)) # 250+10 = 260 => 255
  5. print("opencv sub operation:", cv2.subtract(x, z)) # 250-255 = -5 => 0
  6. print("numpy add operation:", x+y) # 250+10 = 260 % 256 = 4
  7. print("numpy sub operation:", x-z) # 250-255 = -5 % 256 = 251
  1. opencv add operation: [[255]]
  2. opencv sub operation: [[0]]
  3. numpy add operation: [4]
  4. numpy sub operation: [251]

OpenCV 运算和 Numpy 运算有区别:OpenCV 是饱和运算,即相加最大只能是 255 ,相减最小只能是 0。Numpy 是模运算。见上面注释。

最好使用 OpenCV 中的 add 进行运算

图像融合

cv2.addWeighted() 两张图片以权重进行融合,使其给人一种混合或透明的感觉。图片按以下公式运算
$g(x) = (1 - \alpha)f_0(x) + \alpha f_1(x)$

  1. img1 = cv2.imread("ml.png")
  2. img2 = cv2.imread("opencv-logo.png")
  3. dst = cv2.addWeighted(img1, 0.7, img2, 0.3, 0)
  4. cv2.imshow('dst', dst)
  5. cv2.waitKey(0)
  6. cv2.destroyAllWindows()

addWeighted 运算公式为: $dst = \alpha_img1 + \beta_img2 + \gamma$

OpenCV Python 系列教程3 - Core 组件 - 图7

轨迹条版本

  1. img1 = cv2.imread("ml.png")
  2. img2 = cv2.imread("opencv-logo.png")
  3. def nothing(x):
  4. pass
  5. cv2.namedWindow("image")
  6. cv2.createTrackbar("alpha", "image", 0, 100, nothing)
  7. dst = np.zeros(img1.shape, dtype=img1.dtype)
  8. while(1):
  9. cv2.imshow('image', dst)
  10. alpha = cv2.getTrackbarPos("alpha", "image")
  11. dst = cv2.addWeighted(img1, alpha*0.01, img2, 1 -alpha*0.01, 0)
  12. k = cv2.waitKey(1) & 0xFF
  13. if k == 27:
  14. break
  15. cv2.destroyAllWindows()

位运算

包括 AND、OR、NOT 和 XOR 操作。它们在提取图像的任何部分、定义和处理非矩形 ROI 时非常有用。

AND 运算
  1. # 画矩形
  2. Rectangle = np.zeros((300, 300), dtype="uint8")
  3. cv2.rectangle(Rectangle, (25, 25), (275, 275), 255, -1)
  4. cv2.imshow("Rectangle", Rectangle)
  5. cv2.waitKey(0)
  6. # 画圆形
  7. Circle = np.zeros((300, 300), dtype="uint8")
  8. cv2.circle(Circle, (150, 150), 150, 255, -1)
  9. cv2.imshow("Circle", Circle)
  10. cv2.waitKey(0)
  11. bit_and = cv2.bitwise_and(Rectangle, Circle)
  12. cv2.imshow("bit_and", bit_and)
  13. cv2.waitKey(0)
  14. """
  15. sub = cv2.subtract(Rectangle, Circle)
  16. cv2.imshow("sub", sub)
  17. cv2.waitKey()
  18. """
  19. cv2.destroyAllWindows()
  20. x = np.uint8([10])
  21. y = np.uint8([20])
  22. z = np.uint8([10])
  23. cv2.bitwise_and(x, y), cv2.bitwise_and(x, z)
  1. (array([[0]], dtype=uint8), array([[10]], dtype=uint8))

运行结果
OpenCV Python 系列教程3 - Core 组件 - 图8

OR 运算
  1. # 画矩形
  2. Rectangle = np.zeros((300, 300), dtype="uint8")
  3. cv2.rectangle(Rectangle, (25, 25), (275, 275), 255, -1)
  4. cv2.imshow("Rectangle", Rectangle)
  5. cv2.waitKey(0)
  6. # 画圆形
  7. Circle = np.zeros((300, 300), dtype="uint8")
  8. cv2.circle(Circle, (150, 150), 150, 255, -1)
  9. cv2.imshow("Circle", Circle)
  10. cv2.waitKey(0)
  11. bit_or = cv2.bitwise_or(Rectangle, Circle)
  12. cv2.imshow("bit_or", bit_or)
  13. cv2.waitKey(0)
  14. add = cv2.add(Rectangle, Circle)
  15. cv2.imshow("add", add)
  16. cv2.waitKey(0)
  17. cv2.destroyAllWindows()
  18. x = np.uint8([10]) # 0000 1010
  19. y = np.uint8([20]) # 0001 0100
  20. z = np.uint8([40]) # 0010 1000
  21. print(cv2.bitwise_or(x, y)) # 0001 1110 => 30
  22. print(cv2.bitwise_or(x, z)) # 0010 1010 => 42
  1. [[30]]
  2. [[42]]

OR 运算和 cv2.add() 结果一致?

运行结果
OpenCV Python 系列教程3 - Core 组件 - 图9

XOR(异或)运算
  1. # 画矩形
  2. Rectangle = np.zeros((300, 300), dtype="uint8")
  3. cv2.rectangle(Rectangle, (25, 25), (275, 275), 255, -1)
  4. cv2.imshow("Rectangle", Rectangle)
  5. cv2.waitKey(0)
  6. # 画圆形
  7. Circle = np.zeros((300, 300), dtype="uint8")
  8. cv2.circle(Circle, (150, 150), 150, 255, -1)
  9. cv2.imshow("Circle", Circle)
  10. cv2.waitKey(0)
  11. bit_xor = cv2.bitwise_xor(Rectangle, Circle)
  12. cv2.imshow("bit_xor", bit_xor)
  13. cv2.waitKey(0)
  14. cv2.destroyAllWindows()

运行结果
OpenCV Python 系列教程3 - Core 组件 - 图10

NOT 运算
  1. # 画矩形
  2. Rectangle = np.zeros((300, 300), dtype="uint8")
  3. cv2.rectangle(Rectangle, (25, 25), (275, 275), 255, -1)
  4. cv2.imshow("Rectangle", Rectangle)
  5. cv2.waitKey(0)
  6. # 画圆形
  7. Circle = np.zeros((300, 300), dtype="uint8")
  8. cv2.circle(Circle, (150, 150), 150, 255, -1)
  9. cv2.imshow("Circle", Circle)
  10. cv2.waitKey(0)
  11. bit_not = cv2.bitwise_not(Rectangle, Circle)
  12. cv2.imshow("bit_not", bit_not)
  13. cv2.waitKey(0)
  14. cv2.destroyAllWindows()

运行结果
OpenCV Python 系列教程3 - Core 组件 - 图11

综合例程

mask:图像掩模

  1. # 加载图片
  2. img1 = cv2.imread("messi5.jpg")
  3. img2 = cv2.imread("opencv-logo.png")
  4. print(img1.shape, img2.shape)
  5. # 把 OpenCV logo 放在图片的左上角,创建一个 ROI 大小和 logo 图像一致
  6. rows, cols, channels = img2.shape
  7. roi = img1[0:rows, 0:cols]
  8. print("roi.shape:", roi.shape)
  9. cv2.imshow("roi", roi)
  10. cv2.waitKey(0)
  11. # 灰度图
  12. img2gray = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
  13. cv2.imshow("img2gray", img2gray)
  14. cv2.waitKey(0)
  15. ret, mask = cv2.threshold(img2gray, 25, 255, cv2.THRESH_BINARY)
  16. # 解释:若图片 im2gray 的像素值小于 25,则像素置 0(黑),否则置 255(白)
  17. # ret :得到的阈值,mask:阈值化后的图像
  18. print("ret", ret)
  19. cv2.imshow("mask", mask)
  20. cv2.waitKey(0)
  21. mask_inv = cv2.bitwise_not(mask)
  22. # 把 mask 图像的白色像素变为黑色,黑色像素变为白色
  23. cv2.imshow("mask_inv", mask_inv)
  24. cv2.waitKey(0)
  25. # 将 img1 中的 ROI 的 logo 区域涂黑
  26. img1_bg = cv2.bitwise_and(roi, roi, mask=mask_inv)
  27. cv2.imshow("img1_bg", img1_bg)
  28. cv2.waitKey(0)
  29. # plt.imshow(img1_bg)
  30. # 只提取 logo 图像中的 logo
  31. img2_fg = cv2.bitwise_and(img2, img2, mask=mask)
  32. cv2.imshow("img2_fg", img2_fg)
  33. cv2.waitKey(0)
  34. # 将 ROI 区域与 logo 图标运算
  35. dst = cv2.add(img1_bg, img2_fg)
  36. cv2.imshow("dst", dst)
  37. cv2.waitKey(0)
  38. img1[0:rows, 0:cols] = dst
  39. cv2.imshow("res", img1)
  40. cv2.waitKey(0)
  41. cv2.destroyAllWindows()
  1. (342, 548, 3) (186, 152, 3)
  2. roi.shape: (186, 152, 3)
  3. ret 25.0

运行结果
OpenCV Python 系列教程3 - Core 组件 - 图12

要将两张图放在一起,且都是原来的图像,如上图所示,将 OpenCV logo (img2)放在 img1 上面,巧妙的利用黑色像素(0)。
如何将两个图一原来的图像进行重叠:

  1. 创建一个 ROI 区域(ROI 区域来自底图,如上面的例子的 img1)
  2. 将 logo 之外的像素置 0 (就是背景是纯黑色),如上图的 img2_fg
  3. 将 ROI 区域上要放置 logo 的位置置 0,如上图的 img1_bg
  4. 将 2、3 步得到的图像相加( cv2.add() )
  5. 将第 4 步得到的图像将 img1 的区域替换掉

练习(用函数实现图像的无缝拼接)

  1. def pinjie(img1, img2, x=0, y=0):
  2. """
  3. img1: 底图
  4. img2: 上方的图
  5. x, y:选择放置的位置
  6. """
  7. # 创建一个 ROI
  8. rows, cols, channel = img2.shape
  9. roi = img1[x:x+rows, y:y+cols]
  10. img2gray = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
  11. ret, mask = cv2.threshold(img2gray, 25, 255, cv2.THRESH_BINARY)
  12. mask_inv = cv2.bitwise_not(mask)
  13. roi = cv2.bitwise_and(roi, roi, mask=mask_inv)
  14. img2_bg = cv2.bitwise_and(img2, img2, mask=mask)
  15. img1[x:x+rows, y:y+cols] = cv2.add(roi, img2_bg)
  16. return img1
  17. img1 = cv2.imread("messi5.jpg")
  18. img2 = cv2.imread("opencv-logo.png")
  19. dst = pinjie(img1, img2, 100, 100)
  20. cv2.imshow("dst", dst)
  21. cv2.waitKey(0)
  22. cv2.destroyAllWindows()

更多资料

本节原文

Python 下 opencv 使用笔记(四)(图像的阈值处理)

性能评估和改进技术

图像处理中,不仅需要准确,更需要快速的方法进行处理。
学习目标:

  • 评估代码的性能
  • 提升代码性能的小技巧
  • cv2.getTickCount, cv2.getTickFrequency

time 模块可以测量执行时间;
profile 模块有助于获得关于代码的详细报告,比如代码中每个函数花费了多少时间、调用了多少次等等。

使用 OpenCV 衡量性能

  • cv2.getTickCount 在代码前后使用可以得到代码的运行时间
  • cv2.getTickFrequency 返回时钟周期的频率,即每秒的时钟周期数
  1. img1 = cv2.imread('messi5.jpg')
  2. e1 = cv2.getTickCount()
  3. for i in range(5,49,2):
  4. img1 = cv2.medianBlur(img1,i)
  5. e2 = cv2.getTickCount()
  6. t = (e2 - e1)/cv2.getTickFrequency()
  7. e2 - e1, t
  1. (8315303, 0.8315303)

python 中的 time 模块也可以实现该功能

OpenCV 中的默认优化

OpenCV 的许多函数都是使用SSE2、AVX等优化的。它还包含未优化的代码。因此,如果我们的系统支持这些特性,我们应该利用它们(几乎所有现代处理器都支持它们)。它在编译时默认启用。OpenCV 在启用时运行优化后的代码,否则运行未优化的代码。使用 cv2.useoptimization() 来检查它是否启用/禁用,使用
cv2.setuseoptimization() 来启用/禁用它。

  1. # 检查优化器是否开启
  2. cv2.setUseOptimized(True)
  3. cv2.useOptimized()
  1. True
  1. img = cv2.imread("messi5.jpg")
  2. %timeit res = cv2.medianBlur(img,49)
  1. 31.8 ms ± 1.28 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
  1. # 设置优化器的开关
  2. cv2.setUseOptimized(False)
  1. cv2.useOptimized()
  1. False
  1. %timeit res = cv2.medianBlur(img,49)
  1. 30.9 ms ± 448 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

可以看出使用优化器前后的运行性能

IPython 性能测试

测试一下下面几个计算平方的方法哪个更好。
例子:
x = 5; y = x**2x = 5; y = x*xx = np.uint8([5]); y = x*xy = np.square(x) 可以使用 %timeit 进行测试

  1. x = 5
  1. %timeit y = x**2
  1. 505 ns ± 18 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
  1. %timeit y = x*x
  1. 77.5 ns ± 1.98 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
  1. z = np.uint8([5])
  2. %timeit y=z*z
  1. 709 ns ± 57.2 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
  1. %timeit y=np.square(z)
  1. 674 ns ± 66.1 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

y = x*x 比 Numpy 运算快不少

Python 标量操作比 Numpy 标量操作快。因此对于包含一个或两个元素的操作,Python 标量优于 Numpy 数组。当数组的大小稍微大一点时,Numpy 就更有优势。

  1. # 比较 cv2.countNonZero() 和 np.count_nonzero() 的性能
  2. %timeit z = cv2.countNonZero(img[:,:, 0]) # 该函数只能计算单通道的图片
  1. 269 µs ± 30.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
  1. %timeit z = np.count_nonzero(img[:,:, 0])
  1. 677 µs ± 54.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

性能优化技术

首先尝试以一种简单的方式实现该算法。一旦开始工作,对其进行分析,找到瓶颈并对其进行优化。

  • 尽量避免循环,特别是 2/3 重的循环
  • 最大限度地向量化算法/代码,因为 Numpy 和 OpenCV 是针对向量操作进行优化的。
  • 利用缓存一致性
  • 除非必要,不然尽量不要对数组进行复制,数组复制的开销很大

即使在执行了所有这些操作之后,如果代码仍然很慢,或者不可避免地要使用大型循环,那么可以使用其他库,比如Cython来加快速度。

更多资料

Python Optimization Techniques、Scipy Lecture Notes - Advanced Numpy
time profile 模块