requirement.txt
sklearn
pandas
efficientnet_pytorch
数据分析
import os
import cv2
img_path = "./dataset/train/images/"
img_list = [img_path+ i for i in os.listdir(img_path)]
shape = []
for img in img_list:
arr = cv2.imread(img)
shape.append(arr.shape)
训练
主要修改模型的结构 class VisitNet(nn.Module)
# -*- coding: utf-8 -*-
import os, sys, glob, argparse
import pandas as pd
import numpy as np
from tqdm import tqdm
import time, datetime
import pdb, traceback
import cv2
# import imagehash
from PIL import Image
from sklearn.model_selection import train_test_split, StratifiedKFold, KFold
from efficientnet_pytorch import EfficientNet
# model = EfficientNet.from_pretrained('efficientnet-b4')
import torch
torch.manual_seed(0)
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
import torchvision.models as models
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data.dataset import Dataset
# input dataset
"""
train_set 目录结构
├── 0
| ├── xx.jpg
│ ├── xx.jpg
├── 1
| ├── xx.jpg
│ ├── xx.jpg
├── 2
| ├── xx.jpg
│ ├── xx.jpg
├── 3
| ├── xx.jpg
│ ├── xx.jpg
"""
train_jpg = glob.glob('./train_dataset/*/*')
train_jpg = np.array(train_jpg)
print(train_jpg)
if os.path.exists("log.txt"):
os.remove("log.txt")
class QRDataset(Dataset):
def __init__(self, img_path, transform=None):
self.img_path = img_path
if transform is not None:
self.transform = transform
else:
self.transform = None
def __getitem__(self, index):
start_time = time.time()
img = Image.open(self.img_path[index]).convert('RGB')
if self.transform is not None:
img = self.transform(img)
return img,torch.from_numpy(np.array(int(self.img_path[index].split("/")[-2])))
def __len__(self):
return len(self.img_path)
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, *meters):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = ""
def pr2int(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
with open("log.txt", "a+") as f:
f.write('\t'.join(entries)+"\n")
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
class VisitNet(nn.Module):
def __init__(self):
super(VisitNet, self).__init__()
model = models.resnet18(True)
model.avgpool = nn.AdaptiveAvgPool2d(1)
model.fc = nn.Linear(512, 4)
self.resnet = model
# model = EfficientNet.from_pretrained('efficientnet-b4')
# model._fc = nn.Linear(1792, 4)
# self.resnet = model
def forward(self, img):
out = self.resnet(img)
return out
def validate(val_loader, model, criterion):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@2', ':6.2f')
progress = ProgressMeter(len(val_loader), batch_time, losses, top1, top5)
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
for i, (input, target) in enumerate(val_loader):
input = input.cuda()
target = target.cuda()
# compute output
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 2))
losses.update(loss.item(), input.size(0))
top1.update(acc1[0], input.size(0))
top5.update(acc5[0], input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# TODO: this should also be done with the ProgressMeter
print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
with open("log.txt", "a+") as f:
f.write(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5)+"\n")
return top1
def predict(test_loader, model, tta=10):
# switch to evaluate mode
model.eval()
test_pred_tta = None
for _ in range(tta):
test_pred = []
with torch.no_grad():
end = time.time()
for i, (input, target) in enumerate(test_loader):
input = input.cuda()
target = target.cuda()
# compute output
output = model(input, path)
output = output.data.cpu().numpy()
test_pred.append(output)
test_pred = np.vstack(test_pred)
if test_pred_tta is None:
test_pred_tta = test_pred
else:
test_pred_tta += test_pred
return test_pred_tta
def train(train_loader, model, criterion, optimizer, epoch):
batch_time = AverageMeter('Time', ':6.3f')
# data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
# top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(len(train_loader), batch_time, losses, top1)
# switch to train mode
model.train()
end = time.time()
for i, (input, target) in enumerate(train_loader):
input = input.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# compute output
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 2))
losses.update(loss.item(), input.size(0))
top1.update(acc1[0], input.size(0))
# top5.update(acc5[0], input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % 100 == 0:
progress.pr2int(i)
skf = KFold(n_splits=2, random_state=233, shuffle=True)
for flod_idx, (train_idx, val_idx) in enumerate(skf.split(train_jpg, train_jpg)):
print(flod_idx, train_idx, val_idx)
train_loader = torch.utils.data.DataLoader(
QRDataset(train_jpg[train_idx],
transforms.Compose([
# transforms.RandomGrayscale(),
transforms.Resize((512, 512)),
transforms.RandomAffine(10),
transforms.ColorJitter(hue=.05, saturation=.05),
transforms.RandomCrop((224, 224)),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
), batch_size=2, shuffle=True, num_workers=8, pin_memory=True
)
val_loader = torch.utils.data.DataLoader(
QRDataset(train_jpg[val_idx],
transforms.Compose([
transforms.Resize((512, 512)),
# transforms.Resize((124, 124)),
# transforms.RandomCrop((88, 88)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
), batch_size=1, shuffle=False, num_workers=8, pin_memory=True
)
model = VisitNet().cuda()
# model = nn.DataParallel(model).cuda()
criterion = nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.Adam(model.parameters())
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=25, gamma=0.85)
best_acc = 0.0
for epoch in range(120):
scheduler.step()
print('Epoch: ', epoch)
with open("log.txt", "a+") as f:
f.write('Epoch: '+str(epoch)+"\n")
train(train_loader, model, criterion, optimizer, epoch)
val_acc = validate(val_loader, model, criterion)
if val_acc.avg.item() > best_acc:
best_acc = val_acc.avg.item()
torch.save(model.state_dict(), './efficientnet{0}.pt'.format(flod_idx))
预测
# -*- coding: utf-8 -*-
import os, sys, glob, argparse
import pandas as pd
import numpy as np
from tqdm import tqdm
import time, datetime
import pdb, traceback
import cv2
# import imagehash
from PIL import Image
from sklearn.model_selection import train_test_split, StratifiedKFold, KFold
from efficientnet_pytorch import EfficientNet
# model = EfficientNet.from_pretrained('efficientnet-b4')
import torch
torch.manual_seed(0)
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
import torchvision.models as models
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data.dataset import Dataset
class QRDataset(Dataset):
def __init__(self, img_path, transform=None):
self.img_path = img_path
if transform is not None:
self.transform = transform
else:
self.transform = None
def __getitem__(self, index):
start_time = time.time()
img = Image.open(self.img_path[index]).convert('RGB')
if self.transform is not None:
img = self.transform(img)
return img, torch.from_numpy(np.array([1]))#,torch.from_numpy(np.array(int(self.img_path[index].split("/")[-2])))
def __len__(self):
return len(self.img_path)
class VisitNet(nn.Module):
def __init__(self):
super(VisitNet, self).__init__()
# model = models.resnet18(True)
# model.avgpool = nn.AdaptiveAvgPool2d(1)
# model.fc = nn.Linear(512, 4)
# self.resnet = model
model = EfficientNet.from_pretrained('efficientnet-b4')
model._fc = nn.Linear(1792, 4)
self.resnet = model
def forward(self, img):
out = self.resnet(img)
return out
def predict(test_loader, model, tta=10):
# switch to evaluate mode
model.eval()
test_pred_tta = None
for _ in range(tta):
test_pred = []
with torch.no_grad():
end = time.time()
for i, (input, target) in enumerate(test_loader):
input = input.cuda()
target = target.cuda()
# compute output
output = model(input)
output = output.data.cpu().numpy()
test_pred.append(output)
test_pred = np.vstack(test_pred)
if test_pred_tta is None:
test_pred_tta = test_pred
else:
test_pred_tta += test_pred
return test_pred_tta
upload_csv_file = "./dataset/test/upload.csv"
result = pd.read_csv(upload_csv_file)
test_jpg = list(result.iloc[:, 0].values)
test_jpg = list(map(lambda x:"./dataset/test/"+x, test_jpg))
test_jpg = np.array(test_jpg)
test_pred = None
for model_path in ["efficientnet0.pt", "efficientnet1.pt"]:#['resnet18_fold{}.pt'.format(i) for i in [0,2,3,4,6]]:
print(model_path)
test_loader = torch.utils.data.DataLoader(
QRDataset(test_jpg,
transforms.Compose([
transforms.Resize((224, 224)),
# transforms.RandomHorizontalFlip(),
# transforms.RandomVerticalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
), batch_size=64, shuffle=False, num_workers=16, pin_memory=True
)
model = VisitNet().cuda()
model.load_state_dict(torch.load(model_path))
# model = nn.DataParallel(model).cuda()
if test_pred is None:
test_pred = predict(test_loader, model, 5)
else:
test_pred += predict(test_loader, model, 5)
test_csv = pd.DataFrame()
test_csv[0] = list(result.iloc[:, 0].values)
test_csv[1] = np.argmax(test_pred, 1)
test_csv.to_csv('tmp.csv', index=None, header=None)