ES5的语法

  1. function Point(x, y) {
  2. this.x = x;
  3. this.y = y;
  4. }
  5. Point.prototype.toString = function () {
  6. return '(' + this.x + ', ' + this.y + ')';
  7. };
  8. var p = new Point(1, 2);

ES6的语法

  1. class Point {
  2. constructor(x, y) {
  3. this.x = x;
  4. this.y = y;
  5. }
  6. toString() {
  7. return '(' + this.x + ', ' + this.y + ')';
  8. }
  9. }
  10. class Point {
  11. constructor() {
  12. // ...
  13. }
  14. toString() {
  15. // ...
  16. }
  17. toValue() {
  18. // ...
  19. }
  20. }
  21. // 等同于
  22. Point.prototype = {
  23. constructor() {},
  24. toString() {},
  25. toValue() {},
  26. };
  27. // 在类的实例上面调用方法,其实就是调用原型上的方法。
  28. class B {}
  29. let b = new B();
  30. b.constructor === B.prototype.constructor // true
  31. // 由于类的方法都定义在prototype对象上面,
  32. // 所以类的新方法可以添加在prototype对象上面。Object.assign方法可以很方便地一次向类添加多个方法。
  33. class Point {
  34. constructor(){
  35. // ...
  36. }
  37. }
  38. Object.assign(Point.prototype, {
  39. toString(){},
  40. toValue(){}
  41. });
  42. Point.prototype.constructor === Point // true
  43. // 类的内部所有定义的方法,都是不可枚举的(non-enumerable)。
  44. class Point {
  45. constructor(x, y) {
  46. // ...
  47. }
  48. toString() {
  49. // ...
  50. }
  51. }
  52. Object.keys(Point.prototype)
  53. // []
  54. Object.getOwnPropertyNames(Point.prototype)
  55. // ["constructor","toString"]
  56. toString方法是Point类内部定义的方法,它是不可枚举的。这一点与 ES5 的行为不一致。
  57. var Point = function (x, y) {
  58. // ...
  59. };
  60. Point.prototype.toString = function() {
  61. // ...
  62. };
  63. Object.keys(Point.prototype)
  64. // ["toString"]
  65. Object.getOwnPropertyNames(Point.prototype)
  66. // ["constructor","toString"]
  67. 上面代码采用 ES5 的写法,toString方法就是可枚举的。

constructor 方法

constructor方法是类的默认方法,通过new命令生成对象实例时,自动调用该方法。一个类必须有constructor方法,如果没有显式定义,一个空的constructor方法会被默认添加。

  1. class Point {
  2. }
  3. // 等同于
  4. class Point {
  5. constructor() {}
  6. }

上面代码中,定义了一个空的类Point,JavaScript 引擎会自动为它添加一个空的constructor方法。
constructor方法默认返回实例对象(即this),完全可以指定返回另外一个对象。

  1. class Foo {
  2. constructor() {
  3. return Object.create(null);
  4. }
  5. }
  6. new Foo() instanceof Foo
  7. // false

上面代码中,constructor函数返回一个全新的对象,结果导致实例对象不是Foo类的实例。
类必须使用new调用,否则会报错。这是它跟普通构造函数的一个主要区别,后者不用new也可以执行。

  1. class Foo {
  2. constructor() {
  3. return Object.create(null);
  4. }
  5. }
  6. Foo()
  7. // TypeError: Class constructor Foo cannot be invoked without 'new'

类的实例

生成类的实例的写法,与 ES5 完全一样,也是使用new命令。前面说过,如果忘记加上new,像函数那样调用Class,将会报错。

  1. class Point {
  2. // ...
  3. }
  4. // 报错
  5. var point = Point(2, 3);
  6. // 正确
  7. var point = new Point(2, 3);

与 ES5 一样,实例的属性除非显式定义在其本身(即定义在this对象上),否则都是定义在原型上(即定义在class上)。

  1. //定义类
  2. class Point {
  3. constructor(x, y) {
  4. this.x = x;
  5. this.y = y;
  6. }
  7. toString() {
  8. return '(' + this.x + ', ' + this.y + ')';
  9. }
  10. }
  11. var point = new Point(2, 3);
  12. point.toString() // (2, 3)
  13. point.hasOwnProperty('x') // true
  14. point.hasOwnProperty('y') // true
  15. point.hasOwnProperty('toString') // false
  16. point.__proto__.hasOwnProperty('toString') // true

上面代码中,xy都是实例对象point自身的属性(因为定义在this变量上),所以hasOwnProperty方法返回true,而toString是原型对象的属性(因为定义在Point类上),所以hasOwnProperty方法返回false。这些都与 ES5 的行为保持一致。
与 ES5 一样,类的所有实例共享一个原型对象。

  1. var p1 = new Point(2,3);
  2. var p2 = new Point(3,2);
  3. p1.__proto__ === p2.__proto__
  4. //true

上面代码中,p1p2都是Point的实例,它们的原型都是Point.prototype,所以__proto__属性是相等的。
这也意味着,可以通过实例的__proto__属性为“类”添加方法。

__proto__ 并不是语言本身的特性,这是各大厂商具体实现时添加的私有属性,虽然目前很多现代浏览器的 JS 引擎中都提供了这个私有属性,但依旧不建议在生产中使用该属性,避免对环境产生依赖。生产环境中,我们可以使用 Object.getPrototypeOf 方法来获取实例对象的原型,然后再来为原型添加方法/属性。

  1. var p1 = new Point(2,3);
  2. var p2 = new Point(3,2);
  3. p1.__proto__.printName = function () { return 'Oops' };
  4. p1.printName() // "Oops"
  5. p2.printName() // "Oops"
  6. var p3 = new Point(4,2);
  7. p3.printName() // "Oops"

上面代码在p1的原型上添加了一个printName方法,由于p1的原型就是p2的原型,因此p2也可以调用这个方法。而且,此后新建的实例p3也可以调用这个方法。这意味着,使用实例的__proto__属性改写原型,必须相当谨慎,不推荐使用,因为这会改变“类”的原始定义,影响到所有实例。

取值函数(getter)和存值函数(setter)

与 ES5 一样,在“类”的内部可以使用getset关键字,对某个属性设置存值函数和取值函数,拦截该属性的存取行为。

  1. class MyClass {
  2. constructor() {
  3. // ...
  4. }
  5. get prop() {
  6. return 'getter';
  7. }
  8. set prop(value) {
  9. console.log('setter: '+value);
  10. }
  11. }
  12. let inst = new MyClass();
  13. inst.prop = 123;
  14. // setter: 123
  15. inst.prop
  16. // 'getter'

上面代码中,prop属性有对应的存值函数和取值函数,因此赋值和读取行为都被自定义了。
存值函数和取值函数是设置在属性的 Descriptor 对象上的。

  1. class CustomHTMLElement {
  2. constructor(element) {
  3. this.element = element;
  4. }
  5. get html() {
  6. return this.element.innerHTML;
  7. }
  8. set html(value) {
  9. this.element.innerHTML = value;
  10. }
  11. }
  12. var descriptor = Object.getOwnPropertyDescriptor(
  13. CustomHTMLElement.prototype, "html"
  14. );
  15. "get" in descriptor // true
  16. "set" in descriptor // true

上面代码中,存值函数和取值函数是定义在html属性的描述对象上面,这与 ES5 完全一致。

属性表达式

类的属性名,可以采用表达式。

  1. let methodName = 'getArea';
  2. class Square {
  3. constructor(length) {
  4. // ...
  5. }
  6. [methodName]() {
  7. // ...
  8. }
  9. }

上面代码中,Square类的方法名getArea,是从表达式得到的。

Class 表达式

与函数一样,类也可以使用表达式的形式定义。

  1. const MyClass = class Me {
  2. getClassName() {
  3. return Me.name;
  4. }
  5. };

上面代码使用表达式定义了一个类。需要注意的是,这个类的名字是Me,但是Me只在 Class 的内部可用,指代当前类。在 Class 外部,这个类只能用MyClass引用。

  1. let inst = new MyClass();
  2. inst.getClassName() // Me
  3. Me.name // ReferenceError: Me is not defined

上面代码表示,Me只在 Class 内部有定义。
如果类的内部没用到的话,可以省略Me,也就是可以写成下面的形式。

  1. const MyClass = class { /* ... */ };

采用 Class 表达式,可以写出立即执行的 Class。

  1. let person = new class {
  2. constructor(name) {
  3. this.name = name;
  4. }
  5. sayName() {
  6. console.log(this.name);
  7. }
  8. }('张三');
  9. person.sayName(); // "张三"

上面代码中,person是一个立即执行的类的实例。

注意点

(1)严格模式

类和模块的内部,默认就是严格模式,所以不需要使用use strict指定运行模式。只要你的代码写在类或模块之中,就只有严格模式可用。考虑到未来所有的代码,其实都是运行在模块之中,所以 ES6 实际上把整个语言升级到了严格模式。

(2)不存在提升

类不存在变量提升(hoist),这一点与 ES5 完全不同。

  1. new Foo(); // ReferenceError
  2. class Foo {}

上面代码中,Foo类使用在前,定义在后,这样会报错,因为 ES6 不会把类的声明提升到代码头部。这种规定的原因与下文要提到的继承有关,必须保证子类在父类之后定义。

  1. {
  2. let Foo = class {};
  3. class Bar extends Foo {
  4. }
  5. }

上面的代码不会报错,因为Bar继承Foo的时候,Foo已经有定义了。但是,如果存在class的提升,上面代码就会报错,因为class会被提升到代码头部,而let命令是不提升的,所以导致Bar继承Foo的时候,Foo还没有定义。

(3)name 属性

由于本质上,ES6 的类只是 ES5 的构造函数的一层包装,所以函数的许多特性都被Class继承,包括name属性。

  1. class Point {}
  2. Point.name // "Point"

name属性总是返回紧跟在class关键字后面的类名。

(4)Generator 方法

如果某个方法之前加上星号(*),就表示该方法是一个 Generator 函数。

  1. class Foo {
  2. constructor(...args) {
  3. this.args = args;
  4. }
  5. * [Symbol.iterator]() {
  6. for (let arg of this.args) {
  7. yield arg;
  8. }
  9. }
  10. }
  11. for (let x of new Foo('hello', 'world')) {
  12. console.log(x);
  13. }
  14. // hello
  15. // world

上面代码中,Foo类的Symbol.iterator方法前有一个星号,表示该方法是一个 Generator 函数。Symbol.iterator方法返回一个Foo类的默认遍历器,for...of循环会自动调用这个遍历器。

(5)this 的指向

类的方法内部如果含有this,它默认指向类的实例。但是,必须非常小心,一旦单独使用该方法,很可能报错。

  1. class Logger {
  2. printName(name = 'there') {
  3. this.print(`Hello ${name}`);
  4. }
  5. print(text) {
  6. console.log(text);
  7. }
  8. }
  9. const logger = new Logger();
  10. const { printName } = logger;
  11. printName(); // TypeError: Cannot read property 'print' of undefined

上面代码中,printName方法中的this,默认指向Logger类的实例。但是,如果将这个方法提取出来单独使用,this会指向该方法运行时所在的环境(由于 class 内部是严格模式,所以 this 实际指向的是undefined),从而导致找不到print方法而报错。
一个比较简单的解决方法是,在构造方法中绑定this,这样就不会找不到print方法了。

  1. class Logger {
  2. constructor() {
  3. this.printName = this.printName.bind(this);
  4. }
  5. // ...
  6. }

另一种解决方法是使用箭头函数。

  1. class Logger {
  2. constructor() {
  3. this.printName = (name = 'there') => {
  4. this.print(`Hello ${name}`);
  5. };
  6. }
  7. // ...
  8. }

还有一种解决方法是使用Proxy,获取方法的时候,自动绑定this

  1. function selfish (target) {
  2. const cache = new WeakMap();
  3. const handler = {
  4. get (target, key) {
  5. const value = Reflect.get(target, key);
  6. if (typeof value !== 'function') {
  7. return value;
  8. }
  9. if (!cache.has(value)) {
  10. cache.set(value, value.bind(target));
  11. }
  12. return cache.get(value);
  13. }
  14. };
  15. const proxy = new Proxy(target, handler);
  16. return proxy;
  17. }
  18. const logger = selfish(new Logger());

静态方法

类相当于实例的原型,所有在类中定义的方法,都会被实例继承。如果在一个方法前,加上static关键字,就表示该方法不会被实例继承,而是直接通过类来调用,这就称为“静态方法”。

  1. class Foo {
  2. static classMethod() {
  3. return 'hello';
  4. }
  5. }
  6. Foo.classMethod() // 'hello'
  7. var foo = new Foo();
  8. foo.classMethod()
  9. // TypeError: foo.classMethod is not a function

上面代码中,Foo类的classMethod方法前有static关键字,表明该方法是一个静态方法,可以直接在Foo类上调用(Foo.classMethod()),而不是在Foo类的实例上调用。如果在实例上调用静态方法,会抛出一个错误,表示不存在该方法。
注意,如果静态方法包含this关键字,这个this指的是类,而不是实例。

  1. class Foo {
  2. static bar() {
  3. this.baz();
  4. }
  5. static baz() {
  6. console.log('hello');
  7. }
  8. baz() {
  9. console.log('world');
  10. }
  11. }
  12. Foo.bar() // hello

上面代码中,静态方法bar调用了this.baz,这里的this指的是Foo类,而不是Foo的实例,等同于调用Foo.baz。另外,从这个例子还可以看出,静态方法可以与非静态方法重名。
父类的静态方法,可以被子类继承。

  1. class Foo {
  2. static classMethod() {
  3. return 'hello';
  4. }
  5. }
  6. class Bar extends Foo {
  7. }
  8. Bar.classMethod() // 'hello'

上面代码中,父类Foo有一个静态方法,子类Bar可以调用这个方法。
静态方法也是可以从super对象上调用的。

  1. class Foo {
  2. static classMethod() {
  3. return 'hello';
  4. }
  5. }
  6. class Bar extends Foo {
  7. static classMethod() {
  8. return super.classMethod() + ', too';
  9. }
  10. }
  11. Bar.classMethod() // "hello, too

静态属性

静态属性指的是 Class 本身的属性,即Class.propName,而不是定义在实例对象(this)上的属性。

  1. class Foo {
  2. }
  3. Foo.prop = 1;
  4. Foo.prop // 1

上面的写法为Foo类定义了一个静态属性prop
目前,只有这种写法可行,因为 ES6 明确规定,Class 内部只有静态方法,没有静态属性。现在有一个提案提供了类的静态属性,写法是在实例属性法的前面,加上static关键字。

  1. class MyClass {
  2. static myStaticProp = 42;
  3. constructor() {
  4. console.log(MyClass.myStaticProp); // 42
  5. }
  6. }

这个新写法大大方便了静态属性的表达。

  1. // 老写法
  2. class Foo {
  3. // ...
  4. }
  5. Foo.prop = 1;
  6. // 新写法
  7. class Foo {
  8. static prop = 1;
  9. }

上面代码中,老写法的静态属性定义在类的外部。整个类生成以后,再生成静态属性。这样让人很容易忽略这个静态属性,也不符合相关代码应该放在一起的代码组织原则。另外,新写法是显式声明(declarative),而不是赋值处理,语义更好。

私有方法和私有属性

现有的解决方案

私有方法和私有属性,是只能在类的内部访问的方法和属性,外部不能访问。这是常见需求,有利于代码的封装,但 ES6 不提供,只能通过变通方法模拟实现。
一种做法是在命名上加以区别。

  1. class Widget {
  2. // 公有方法
  3. foo (baz) {
  4. this._bar(baz);
  5. }
  6. // 私有方法
  7. _bar(baz) {
  8. return this.snaf = baz;
  9. }
  10. // ...
  11. }

上面代码中,_bar方法前面的下划线,表示这是一个只限于内部使用的私有方法。但是,这种命名是不保险的,在类的外部,还是可以调用到这个方法。
另一种方法就是索性将私有方法移出模块,因为模块内部的所有方法都是对外可见的。

  1. class Widget {
  2. foo (baz) {
  3. bar.call(this, baz);
  4. }
  5. // ...
  6. }
  7. function bar(baz) {
  8. return this.snaf = baz;
  9. }

上面代码中,foo是公开方法,内部调用了bar.call(this, baz)。这使得bar实际上成为了当前模块的私有方法。
还有一种方法是利用Symbol值的唯一性,将私有方法的名字命名为一个Symbol值。

  1. const bar = Symbol('bar');
  2. const snaf = Symbol('snaf');
  3. export default class myClass{
  4. // 公有方法
  5. foo(baz) {
  6. this[bar](baz);
  7. }
  8. // 私有方法
  9. [bar](baz) {
  10. return this[snaf] = baz;
  11. }
  12. // ...
  13. };

上面代码中,barsnaf都是Symbol值,一般情况下无法获取到它们,因此达到了私有方法和私有属性的效果。但是也不是绝对不行,Reflect.ownKeys()依然可以拿到它们。

  1. const inst = new myClass();
  2. Reflect.ownKeys(myClass.prototype)
  3. // [ 'constructor', 'foo', Symbol(bar) ]

上面代码中,Symbol 值的属性名依然可以从类的外部拿到。

私有属性的提案

目前,有一个提案,为class加了私有属性。方法是在属性名之前,使用#表示。

  1. class IncreasingCounter {
  2. #count = 0;
  3. get value() {
  4. console.log('Getting the current value!');
  5. return this.#count;
  6. }
  7. increment() {
  8. this.#count++;
  9. }
  10. }

上面代码中,#count就是私有属性,只能在类的内部使用(this.#count)。如果在类的外部使用,就会报错。

  1. const counter = new IncreasingCounter();
  2. counter.#count // 报错
  3. counter.#count = 42 // 报错

上面代码在类的外部,读取私有属性,就会报错。
下面是另一个例子。

  1. class Point {
  2. #x;
  3. constructor(x = 0) {
  4. this.#x = +x;
  5. }
  6. get x() {
  7. return this.#x;
  8. }
  9. set x(value) {
  10. this.#x = +value;
  11. }
  12. }

上面代码中,#x就是私有属性,在Point类之外是读取不到这个属性的。由于井号#是属性名的一部分,使用时必须带有#一起使用,所以#xx是两个不同的属性。
之所以要引入一个新的前缀#表示私有属性,而没有采用private关键字,是因为 JavaScript 是一门动态语言,没有类型声明,使用独立的符号似乎是唯一的比较方便可靠的方法,能够准确地区分一种属性是否为私有属性。另外,Ruby 语言使用@表示私有属性,ES6 没有用这个符号而使用#,是因为@已经被留给了 Decorator。
这种写法不仅可以写私有属性,还可以用来写私有方法。

  1. class Foo {
  2. #a;
  3. #b;
  4. constructor(a, b) {
  5. this.#a = a;
  6. this.#b = b;
  7. }
  8. #sum() {
  9. return #a + #b;
  10. }
  11. printSum() {
  12. console.log(this.#sum());
  13. }
  14. }

上面代码中,#sum()就是一个私有方法。
另外,私有属性也可以设置 getter 和 setter 方法。

  1. class Counter {
  2. #xValue = 0;
  3. constructor() {
  4. super();
  5. // ...
  6. }
  7. get #x() { return #xValue; }
  8. set #x(value) {
  9. this.#xValue = value;
  10. }
  11. }

上面代码中,#x是一个私有属性,它的读写都通过get #x()set #x()来完成。
私有属性不限于从this引用,只要是在类的内部,实例也可以引用私有属性。

  1. class Foo {
  2. #privateValue = 42;
  3. static getPrivateValue(foo) {
  4. return foo.#privateValue;
  5. }
  6. }
  7. Foo.getPrivateValue(new Foo()); // 42

上面代码允许从实例foo上面引用私有属性。
私有属性和私有方法前面,也可以加上static关键字,表示这是一个静态的私有属性或私有方法。

  1. class FakeMath {
  2. static PI = 22 / 7;
  3. static #totallyRandomNumber = 4;
  4. static #computeRandomNumber() {
  5. return FakeMath.#totallyRandomNumber;
  6. }
  7. static random() {
  8. console.log('I heard you like random numbers…')
  9. return FakeMath.#computeRandomNumber();
  10. }
  11. }
  12. FakeMath.PI // 3.142857142857143
  13. FakeMath.random()
  14. // I heard you like random numbers…
  15. // 4
  16. FakeMath.#totallyRandomNumber // 报错
  17. FakeMath.#computeRandomNumber() // 报错

上面代码中,#totallyRandomNumber是私有属性,#computeRandomNumber()是私有方法,只能在FakeMath这个类的内部调用,外部调用就会报错。

new.target 属性

new是从构造函数生成实例对象的命令。ES6 为new命令引入了一个new.target属性,该属性一般用在构造函数之中,返回new命令作用于的那个构造函数。如果构造函数不是通过new命令或Reflect.construct()调用的,new.target会返回undefined,因此这个属性可以用来确定构造函数是怎么调用的。

必须使用new实例化

  1. function Person(name) {
  2. if (new.target !== undefined) {
  3. this.name = name;
  4. } else {
  5. throw new Error('必须使用 new 命令生成实例');
  6. }
  7. }
  8. // 另一种写法
  9. function Person(name) {
  10. if (new.target === Person) {
  11. this.name = name;
  12. } else {
  13. throw new Error('必须使用 new 命令生成实例');
  14. }
  15. }
  16. var person = new Person('张三'); // 正确
  17. var notAPerson = Person.call(person, '张三'); // 报错

上面代码确保构造函数只能通过new命令调用。
Class 内部调用new.target,返回当前 Class。

  1. class Rectangle {
  2. constructor(length, width) {
  3. console.log(new.target === Rectangle);
  4. this.length = length;
  5. this.width = width;
  6. }
  7. }
  8. var obj = new Rectangle(3, 4); // 输出 true

需要注意的是,子类继承父类时,new.target会返回子类。

  1. class Rectangle {
  2. constructor(length, width) {
  3. console.log(new.target === Rectangle);
  4. // ...
  5. }
  6. }
  7. class Square extends Rectangle {
  8. constructor(length) {
  9. super(length, width);
  10. }
  11. }
  12. var obj = new Square(3); // 输出 false

上面代码中,new.target会返回子类。
利用这个特点,可以写出不能独立使用、必须继承后才能使用的类。

抽象类的实现

  1. class Shape {
  2. constructor() {
  3. if (new.target === Shape) {
  4. throw new Error('本类不能实例化');
  5. }
  6. }
  7. }
  8. class Rectangle extends Shape {
  9. constructor(length, width) {
  10. super();
  11. // ...
  12. }
  13. }
  14. var x = new Shape(); // 报错
  15. var y = new Rectangle(3, 4); // 正确

上面代码中,Shape类不能被实例化,只能用于继承。
注意,在函数外部,使用new.target会报错。

Class 的继承

extends

Class 可以通过extends关键字实现继承,这比 ES5 的通过修改原型链实现继承,要清晰和方便很多。

  1. class Point {
  2. }
  3. class ColorPoint extends Point {
  4. }

子类必须在constructor方法中调用super方法,否则新建实例时会报错。这是因为子类自己的this对象,必须先通过父类的构造函数完成塑造,得到与父类同样的实例属性和方法,然后再对其进行加工,加上子类自己的实例属性和方法。如果不调用super方法,子类就得不到this对象。

super() super方法

  1. class ColorPoint extends Point {
  2. }
  3. // 等同于
  4. class ColorPoint extends Point {
  5. constructor(...args) {
  6. super(...args);
  7. }
  8. }

super这个关键字,既可以当作函数使用,也可以当作对象使用。在这两种情况下,它的用法完全不同。

super虽然代表了父类A的构造函数,但是返回的是子类B的实例,即super内部的this指的是B的实例,因此super()在这里相当于A.prototype.constructor.call(this)

  1. class A {
  2. constructor() {
  3. console.log(new.target.name);
  4. }
  5. }
  6. class B extends A {
  7. constructor() {
  8. super();
  9. }
  10. }
  11. new A() // A
  12. new B() // B

super属性的使用

第二种情况,super作为对象时,在普通方法中,指向父类的原型对象;在静态方法中,指向父类。

  1. class A {
  2. p() {
  3. return 2;
  4. }
  5. }
  6. class B extends A {
  7. constructor() {
  8. super();
  9. console.log(super.p()); // 2
  10. }
  11. }
  12. let b = new B();

上面代码中,子类B当中的super.p(),就是将super当作一个对象使用。这时,super在普通方法之中,指向A.prototype,所以super.p()就相当于A.prototype.p()

原生构造函数的继承

原生构造函数是指语言内置的构造函数,通常用来生成数据结构。ECMAScript 的原生构造函数大致有下面这些。

  • Boolean()
  • Number()
  • String()
  • Array()
  • Date()
  • Function()
  • RegExp()
  • Error()
  • Object()

以前,这些原生构造函数是无法继承的,比如,不能自己定义一个Array的子类。

  1. function MyArray() {
  2. Array.apply(this, arguments);
  3. }
  4. MyArray.prototype = Object.create(Array.prototype, {
  5. constructor: {
  6. value: MyArray,
  7. writable: true,
  8. configurable: true,
  9. enumerable: true
  10. }
  11. });

上面代码定义了一个继承 Array 的MyArray类。但是,这个类的行为与Array完全不一致。

  1. var colors = new MyArray();
  2. colors[0] = "red";
  3. colors.length // 0
  4. colors.length = 0;
  5. colors[0] // "red"

之所以会发生这种情况,是因为子类无法获得原生构造函数的内部属性,通过Array.apply()或者分配给原型对象都不行。原生构造函数会忽略apply方法传入的this,也就是说,原生构造函数的this无法绑定,导致拿不到内部属性。
ES5 是先新建子类的实例对象this,再将父类的属性添加到子类上,由于父类的内部属性无法获取,导致无法继承原生的构造函数。比如,Array构造函数有一个内部属性[[DefineOwnProperty]],用来定义新属性时,更新length属性,这个内部属性无法在子类获取,导致子类的length属性行为不正常。
下面的例子中,我们想让一个普通对象继承Error对象。

  1. var e = {};
  2. Object.getOwnPropertyNames(Error.call(e))
  3. // [ 'stack' ]
  4. Object.getOwnPropertyNames(e)
  5. // []

上面代码中,我们想通过Error.call(e)这种写法,让普通对象e具有Error对象的实例属性。但是,Error.call()完全忽略传入的第一个参数,而是返回一个新对象,e本身没有任何变化。这证明了Error.call(e)这种写法,无法继承原生构造函数。
ES6 允许继承原生构造函数定义子类,因为 ES6 是先新建父类的实例对象this,然后再用子类的构造函数修饰this,使得父类的所有行为都可以继承。下面是一个继承Array的例子。

  1. class MyArray extends Array {
  2. constructor(...args) {
  3. super(...args);
  4. }
  5. }
  6. var arr = new MyArray();
  7. arr[0] = 12;
  8. arr.length // 1
  9. arr.length = 0;
  10. arr[0] // undefined

上面代码定义了一个MyArray类,继承了Array构造函数,因此就可以从MyArray生成数组的实例。这意味着,ES6 可以自定义原生数据结构(比如ArrayString等)的子类,这是 ES5 无法做到的。
上面这个例子也说明,extends关键字不仅可以用来继承类,还可以用来继承原生的构造函数。因此可以在原生数据结构的基础上,定义自己的数据结构。下面就是定义了一个带版本功能的数组。

  1. class VersionedArray extends Array {
  2. constructor() {
  3. super();
  4. this.history = [[]];
  5. }
  6. commit() {
  7. this.history.push(this.slice());
  8. }
  9. revert() {
  10. this.splice(0, this.length, ...this.history[this.history.length - 1]);
  11. }
  12. }
  13. var x = new VersionedArray();
  14. x.push(1);
  15. x.push(2);
  16. x // [1, 2]
  17. x.history // [[]]
  18. x.commit();
  19. x.history // [[], [1, 2]]
  20. x.push(3);
  21. x // [1, 2, 3]
  22. x.history // [[], [1, 2]]
  23. x.revert();
  24. x // [1, 2]

上面代码中,VersionedArray会通过commit方法,将自己的当前状态生成一个版本快照,存入history属性。revert方法用来将数组重置为最新一次保存的版本。除此之外,VersionedArray依然是一个普通数组,所有原生的数组方法都可以在它上面调用。
下面是一个自定义Error子类的例子,可以用来定制报错时的行为。

  1. class ExtendableError extends Error {
  2. constructor(message) {
  3. super();
  4. this.message = message;
  5. this.stack = (new Error()).stack;
  6. this.name = this.constructor.name;
  7. }
  8. }
  9. class MyError extends ExtendableError {
  10. constructor(m) {
  11. super(m);
  12. }
  13. }
  14. var myerror = new MyError('ll');
  15. myerror.message // "ll"
  16. myerror instanceof Error // true
  17. myerror.name // "MyError"
  18. myerror.stack
  19. // Error
  20. // at MyError.ExtendableError
  21. // ...

注意,继承Object的子类,有一个行为差异

  1. class NewObj extends Object{
  2. constructor(){
  3. super(...arguments);
  4. }
  5. }
  6. var o = new NewObj({attr: true});
  7. o.attr === true // false

上面代码中,NewObj继承了Object,但是无法通过super方法向父类Object传参。这是因为 ES6 改变了Object构造函数的行为,一旦发现Object方法不是通过new Object()这种形式调用,ES6 规定Object构造函数会忽略参数。

Mixin 模式的实现

Mixin 指的是多个对象合成一个新的对象,新对象具有各个组成成员的接口。它的最简单实现如下。

  1. const a = {
  2. a: 'a'
  3. };
  4. const b = {
  5. b: 'b'
  6. };
  7. const c = {...a, ...b}; // {a: 'a', b: 'b'}

上面代码中,c对象是a对象和b对象的合成,具有两者的接口。
下面是一个更完备的实现,将多个类的接口“混入”(mix in)另一个类。

  1. function mix(...mixins) {
  2. class Mix {
  3. constructor() {
  4. for (let mixin of mixins) {
  5. copyProperties(this, new mixin()); // 拷贝实例属性
  6. }
  7. }
  8. }
  9. for (let mixin of mixins) {
  10. copyProperties(Mix, mixin); // 拷贝静态属性
  11. copyProperties(Mix.prototype, mixin.prototype); // 拷贝原型属性
  12. }
  13. return Mix;
  14. }
  15. function copyProperties(target, source) {
  16. for (let key of Reflect.ownKeys(source)) {
  17. if ( key !== 'constructor'
  18. && key !== 'prototype'
  19. && key !== 'name'
  20. ) {
  21. let desc = Object.getOwnPropertyDescriptor(source, key);
  22. Object.defineProperty(target, key, desc);
  23. }
  24. }
  25. }

上面代码的mix函数,可以将多个对象合成为一个类。使用的时候,只要继承这个类即可。

  1. class DistributedEdit extends mix(Loggable, Serializable) {
  2. // ...
  3. }