Java 多线程
业务中遇到一个需求,需要同时修改最多约5万条数据,而且还不支持批量或异步修改操作。于是只能写个for循环操作,但操作耗时太长,只能一步一步寻找其他解决方案。
具体操作如下:
1、循环操作的代码
先写一个最简单的for循环代码,看看耗时情况怎么样。
/**** 一条一条依次对50000条数据进行更新操作* 耗时:2m27s,1m54s*/@Testvoid updateStudent() {List<Student> allStudents = studentMapper.getAll();allStudents.forEach(s -> {//更新教师信息String teacher = s.getTeacher();String newTeacher = "TNO_" + new Random().nextInt(100);s.setTeacher(newTeacher);studentMapper.update(s);});}
循环修改整体耗时约 1分54秒,且代码中没有手动事务控制应该是自动事务提交,所以每次操作事务都会提交所以操作比较慢,先对代码中添加手动事务控制,看查询效率怎样。
2、使用手动事务的操作代码
修改后的代码如下:
@Autowiredprivate DataSourceTransactionManager dataSourceTransactionManager;@Autowiredprivate TransactionDefinition transactionDefinition;/*** 由于希望更新操作 一次性完成,需要手动控制添加事务* 耗时:24s* 从测试结果可以看出,添加事务后插入数据的效率有明显的提升*/@Testvoid updateStudentWithTrans() {List<Student> allStudents = studentMapper.getAll();TransactionStatus transactionStatus = dataSourceTransactionManager.getTransaction(transactionDefinition);try {allStudents.forEach(s -> {//更新教师信息String teacher = s.getTeacher();String newTeacher = "TNO_" + new Random().nextInt(100);s.setTeacher(newTeacher);studentMapper.update(s);});dataSourceTransactionManager.commit(transactionStatus);} catch (Throwable e) {dataSourceTransactionManager.rollback(transactionStatus);throw e;}}
添加手动事务操控制后,整体耗时约 24秒,这相对于自动事务提交的代码,快了约5倍,对于大量循环数据库提交操作,添加手动事务可以有效提高操作效率。
3、尝试多线程进行数据修改
添加数据库手动事务后操作效率有明细提高,但还是比较长,接下来尝试多线程提交看是不是能够再快一些。
先添加一个Service将批量修改操作整合一下,具体代码如下:
StudentServiceImpl.java
@Servicepublic class StudentServiceImpl implements StudentService {@Autowiredprivate StudentMapper studentMapper;@Autowiredprivate DataSourceTransactionManager dataSourceTransactionManager;@Autowiredprivate TransactionDefinition transactionDefinition;@Overridepublic void updateStudents(List<Student> students, CountDownLatch threadLatch) {TransactionStatus transactionStatus = dataSourceTransactionManager.getTransaction(transactionDefinition);System.out.println("子线程:" + Thread.currentThread().getName());try {students.forEach(s -> {// 更新教师信息// String teacher = s.getTeacher();String newTeacher = "TNO_" + new Random().nextInt(100);s.setTeacher(newTeacher);studentMapper.update(s);});dataSourceTransactionManager.commit(transactionStatus);threadLatch.countDown();} catch (Throwable e) {e.printStackTrace();dataSourceTransactionManager.rollback(transactionStatus);}}}
批量测试代码,采用了多线程进行提交,修改后测试代码如下:
@Autowiredprivate DataSourceTransactionManager dataSourceTransactionManager;@Autowiredprivate TransactionDefinition transactionDefinition;@Autowiredprivate StudentService studentService;/*** 对用户而言,27s 任是一个较长的时间,尝试用多线程的方式来经行修改操作看能否加快处理速度* 预计创建10个线程,每个线程进行5000条数据修改操作* 耗时统计* 1 线程数:1 耗时:25s* 2 线程数:2 耗时:14s* 3 线程数:5 耗时:15s* 4 线程数:10 耗时:15s* 5 线程数:100 耗时:15s* 6 线程数:200 耗时:15s* 7 线程数:500 耗时:17s* 8 线程数:1000 耗时:19s* 8 线程数:2000 耗时:23s* 8 线程数:5000 耗时:29s*/@Testvoid updateStudentWithThreads() {//查询总数据List<Student> allStudents = studentMapper.getAll();// 线程数量final Integer threadCount = 100;//每个线程处理的数据量final Integer dataPartionLength = (allStudents.size() + threadCount - 1) / threadCount;// 创建多线程处理任务ExecutorService studentThreadPool = Executors.newFixedThreadPool(threadCount);CountDownLatch threadLatchs = new CountDownLatch(threadCount);for (int i = 0; i < threadCount; i++) {// 每个线程处理的数据List<Student> threadDatas = allStudents.stream().skip(i * dataPartionLength).limit(dataPartionLength).collect(Collectors.toList());studentThreadPool.execute(() -> {studentService.updateStudents(threadDatas, threadLatchs);});}try {// 倒计时锁设置超时时间 30sthreadLatchs.await(30, TimeUnit.SECONDS);} catch (Throwable e) {e.printStackTrace();}System.out.println("主线程完成");}
多线程提交修改时,尝试了不同线程数对提交速度的影响,具体可以看下面表格,
| 线程数 | 1 | 2 | 5 | 10 | 100 | 500 | 1000 | 2000 | 5000 |
|---|---|---|---|---|---|---|---|---|---|
| 耗时/s | 25 | 14 | 15 | 15 | 15 | 17 | 19 | 23 | 29 |
根据表格,线程数增大提交速度并非一直增大,在当前情况下约在2-5个线程数时,提交速度最快(实际线程数还是需要根据服务器配置实际测试)。
4、基于两个CountDownLatch控制多线程事务提交
由于多线程提交时,每个线程事务时单独的,无法保证一致性,尝试给多线程添加事务控制,来保证每个线程都是在插入数据完成后在提交事务,
这里使用两个 CountDownLatch 来控制主线程与子线程事务提交,并设置了超时时间为 30 秒。对代码进行了一点修改:
@Overridepublic void updateStudentsThread(List<Student> students, CountDownLatch threadLatch, CountDownLatch mainLatch, StudentTaskError taskStatus) {TransactionStatus transactionStatus = dataSourceTransactionManager.getTransaction(transactionDefinition);System.out.println("子线程:" + Thread.currentThread().getName());try {students.forEach(s -> {// 更新教师信息// String teacher = s.getTeacher();String newTeacher = "TNO_" + new Random().nextInt(100);s.setTeacher(newTeacher);studentMapper.update(s);});} catch (Throwable e) {taskStatus.setIsError();} finally {threadLatch.countDown(); // 切换到主线程执行}try {mainLatch.await(); //等待主线程执行} catch (Throwable e) {taskStatus.setIsError();}// 判断是否有错误,如有错误 就回滚事务if (taskStatus.getIsError()) {dataSourceTransactionManager.rollback(transactionStatus);} else {dataSourceTransactionManager.commit(transactionStatus);}}/*** 由于每个线程都是单独的事务,需要添加对线程事务的统一控制* 这边使用两个 CountDownLatch 对子线程的事务进行控制*/@Testvoid updateStudentWithThreadsAndTrans() {//查询总数据List<Student> allStudents = studentMapper.getAll();// 线程数量final Integer threadCount = 4;//每个线程处理的数据量final Integer dataPartionLength = (allStudents.size() + threadCount - 1) / threadCount;// 创建多线程处理任务ExecutorService studentThreadPool = Executors.newFixedThreadPool(threadCount);CountDownLatch threadLatchs = new CountDownLatch(threadCount); // 用于计算子线程提交数量CountDownLatch mainLatch = new CountDownLatch(1); // 用于判断主线程是否提交StudentTaskError taskStatus = new StudentTaskError(); // 用于判断子线程任务是否有错误for (int i = 0; i < threadCount; i++) {// 每个线程处理的数据List<Student> threadDatas = allStudents.stream().skip(i * dataPartionLength).limit(dataPartionLength).collect(Collectors.toList());studentThreadPool.execute(() -> {studentService.updateStudentsThread(threadDatas, threadLatchs, mainLatch, taskStatus);});}try {// 倒计时锁设置超时时间 30sboolean await = threadLatchs.await(30, TimeUnit.SECONDS);if (!await) { // 等待超时,事务回滚taskStatus.setIsError();}} catch (Throwable e) {e.printStackTrace();taskStatus.setIsError();}mainLatch.countDown(); // 切换到子线程执行studentThreadPool.shutdown(); //关闭线程池System.out.println("主线程完成");}
本想再次测试一下不同线程数对执行效率的影响时,发现当线程数超过10个时,执行时就报错。具体错误内容如下:
Exception in thread "pool-1-thread-2" org.springframework.transaction.CannotCreateTransactionException: Could not open JDBC Connection for transaction; nested exception is java.sql.SQLTransientConnectionException: HikariPool-1 - Connection is not available, request timed out after 30055ms.at org.springframework.jdbc.datasource.DataSourceTransactionManager.doBegin(DataSourceTransactionManager.java:309)at org.springframework.transaction.support.AbstractPlatformTransactionManager.startTransaction(AbstractPlatformTransactionManager.java:400)at org.springframework.transaction.support.AbstractPlatformTransactionManager.getTransaction(AbstractPlatformTransactionManager.java:373)at com.example.springbootmybatis.service.Impl.StudentServiceImpl.updateStudentsThread(StudentServiceImpl.java:58)at com.example.springbootmybatis.StudentTest.lambda$updateStudentWithThreadsAndTrans$3(StudentTest.java:164)at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)at java.lang.Thread.run(Thread.java:748)Caused by: java.sql.SQLTransientConnectionException: HikariPool-1 - Connection is not available, request timed out after 30055ms.at com.zaxxer.hikari.pool.HikariPool.createTimeoutException(HikariPool.java:696)at com.zaxxer.hikari.pool.HikariPool.getConnection(HikariPool.java:197)at com.zaxxer.hikari.pool.HikariPool.getConnection(HikariPool.java:162)at com.zaxxer.hikari.HikariDataSource.getConnection(HikariDataSource.java:128)at org.springframework.jdbc.datasource.DataSourceTransactionManager.doBegin(DataSourceTransactionManager.java:265)... 7 more
错误的大致意思时,不能为数据库事务打开 jdbc Connection,连接在30s的时候超时了。由于前面启动的十个线程需要等待主线程完成后才能提交,所以一直占用连接未释放,造成后面的进程创建连接超时。
看错误日志中错误的来源是 HikariPool ,来重新配置一下这个连接池的参数,将最大连接数修改为100,具体配置如下:
# 连接池中允许的最小连接数。缺省值:10spring.datasource.hikari.minimum-idle=10# 连接池中允许的最大连接数。缺省值:10spring.datasource.hikari.maximum-pool-size=100# 自动提交spring.datasource.hikari.auto-commit=true# 一个连接idle状态的最大时长(毫秒),超时则被释放(retired),缺省:10分钟spring.datasource.hikari.idle-timeout=30000# 一个连接的生命时长(毫秒),超时而且没被使用则被释放(retired),缺省:30分钟,建议设置比数据库超时时长少30秒spring.datasource.hikari.max-lifetime=1800000# 等待连接池分配连接的最大时长(毫秒),超过这个时长还没可用的连接则发生SQLException, 缺省:30秒
再次执行测试发现没有报错,修改线程数为20又执行了一下,同样执行成功了。
5、基于TransactionStatus集合来控制多线程事务提交
使用事务集合来进行多线程事务控制,主要代码如下
@Servicepublic class StudentsTransactionThread {@Autowiredprivate StudentMapper studentMapper;@Autowiredprivate StudentService studentService;@Autowiredprivate PlatformTransactionManager transactionManager;List<TransactionStatus> transactionStatuses = Collections.synchronizedList(new ArrayList<TransactionStatus>());@Transactional(propagation = Propagation.REQUIRED, rollbackFor = {Exception.class})public void updateStudentWithThreadsAndTrans() throws InterruptedException {//查询总数据List<Student> allStudents = studentMapper.getAll();// 线程数量final Integer threadCount = 2;//每个线程处理的数据量final Integer dataPartionLength = (allStudents.size() + threadCount - 1) / threadCount;// 创建多线程处理任务ExecutorService studentThreadPool = Executors.newFixedThreadPool(threadCount);CountDownLatch threadLatchs = new CountDownLatch(threadCount);AtomicBoolean isError = new AtomicBoolean(false);try {for (int i = 0; i < threadCount; i++) {// 每个线程处理的数据List<Student> threadDatas = allStudents.stream().skip(i * dataPartionLength).limit(dataPartionLength).collect(Collectors.toList());studentThreadPool.execute(() -> {try {try {studentService.updateStudentsTransaction(transactionManager, transactionStatuses, threadDatas);} catch (Throwable e) {e.printStackTrace();isError.set(true);}finally {threadLatchs.countDown();}} catch (Exception e) {e.printStackTrace();isError.set(true);}});}// 倒计时锁设置超时时间 30sboolean await = threadLatchs.await(30, TimeUnit.SECONDS);// 判断是否超时if (!await) {isError.set(true);}} catch (Throwable e) {e.printStackTrace();isError.set(true);}if (!transactionStatuses.isEmpty()) {if (isError.get()) {transactionStatuses.forEach(s -> transactionManager.rollback(s));} else {transactionStatuses.forEach(s -> transactionManager.commit(s));}}System.out.println("主线程完成");}}@Override@Transactional(propagation = Propagation.REQUIRED, rollbackFor = {Exception.class})public void updateStudentsTransaction(PlatformTransactionManager transactionManager, List<TransactionStatus> transactionStatuses, List<Student> students) {// 使用这种方式将事务状态都放在同一个事务里面DefaultTransactionDefinition def = new DefaultTransactionDefinition();def.setPropagationBehavior(TransactionDefinition.PROPAGATION_REQUIRES_NEW); // 事物隔离级别,开启新事务,这样会比较安全些。TransactionStatus status = transactionManager.getTransaction(def); // 获得事务状态transactionStatuses.add(status);students.forEach(s -> {// 更新教师信息// String teacher = s.getTeacher();String newTeacher = "TNO_" + new Random().nextInt(100);s.setTeacher(newTeacher);studentMapper.update(s);});System.out.println("子线程:" + Thread.currentThread().getName());}
由于这个中方式去前面方式相同,需要等待线程执行完成后才会提交事务,所有任会占用Jdbc连接池,如果线程数量超过连接池最大数量会产生连接超时。所以在使用过程中任要控制线程数量,
6、使用union连接多个select实现批量update
有些情况写不支持,批量update,但支持insert 多条数据,这个时候可尝试将需要更新的数据拼接成多条select 语句,然后使用union 连接起来,再使用update 关联这个数据进行update,具体代码演示如下:
update student,((select 1 as id,'teacher_A' as teacher) union(select 2 as id,'teacher_A' as teacher) union(select 3 as id,'teacher_A' as teacher) union(select 4 as id,'teacher_A' as teacher)/* ....more data ... */) as new_teachersetstudent.teacher=new_teacher.teacherwherestudent.id=new_teacher.id
这种方式在MySQL数据库没有配置 allowMultiQueries=true 也可以实现批量更新。
总结
- 对于大批量数据库操作,使用手动事务提交可以很多程度上提高操作效率
- 多线程对数据库进行操作时,并非线程数越多操作时间越快,按上述示例大约在2-5个线程时操作时间最快。
- 对于多线程阻塞事务提交时,线程数量不能过多。
- 如果能有办法实现批量更新那是最好
