Google Wide&Deep模型的主要思路正如其名,把单输入层的Wide部分和经过多层感知机的Deep部分连接起来,一起输入最终的输出层。其中Wide部分的主要作用是让模型具有记忆性(Memorization),单层的Wide部分善于处理大量稀疏的id类特征,便于让模型直接“记住”用户的大量历史信息;Deep部分的主要作用是让模型具有“泛化性”(Generalization),利用DNN表达能力强的特点,挖掘藏在特征后面的数据模式。最终利用LR输出层将Wide部分和Deep部分组合起来,形成统一的模型。Wide&Deep对之后模型的影响在于——大量深度学习模型采用了两部分甚至多部分组合的形式,利用不同网络结构挖掘不同的信息后进行组合,充分利用和结合了不同网络结构的特点。
一句话概括此结构的优点:Wide部分有利于增强模型的“记忆能力”,Deep部分有利于增强模型的“泛化能力”。
Wide部分
为什么wide部分要用L1 FTRL训练?这个问题是一个很有意思的问题,可能近几年毕业的同学都不大清楚FTRL是什么了。四五年前FTRL曾风靡全部互联网头部公司,成为线性模型在线训练的主要方法。
彻底解释清楚FTRL并不是一件容易的事情,可能要花上10-20页左右的篇幅,感兴趣的同学可以参考冯扬当时的著名文章“在线最优化求解”。
这里简要介绍一下,你可以把FTRL当作一个稀疏性很好,精度又不错的随机梯度下降方法。由于是随机梯度下降,当然可以做到来一个样本就训练一次,进而实现模型的在线更新。所以在四五年前,大部分公司还是线性模型为主的时代,FTRL凭借非常好的在线学习能力成为主流。
说完了FTRL,再说L1正则化,参加过算法岗面试的同学可能都碰到过那个经典面试题“为什么L1正则化比L2正则化更容易产生稀疏解?”。问题的答案现在当然已经是显学了,但这里“稀疏”这个性质又冒出来了。也就是说FTRL with L1非常注重模型的稀疏性。这也就是问题的答案,W&D采用L1 FTRL是想让Wide部分变得更加稀疏。再白话一点就是,L1 FTRL会让Wide部分的大部分权重都为0,我们准备特征的时候就不用准备那么多0权重的特征了,这大大压缩了模型权重,也压缩了特征向量的维度。
稀疏性不见得一直是一个好东西,它不管怎样都会让模型的精度有一定的损伤。肯定是特征向量维度过高导致“稀疏性”成为了关键的考量。这就涉及到Google Wide部分的特征选取了,到底Google选了什么特征需要这么注重稀疏性。我们回到他的业务场景中来。
大家可以看到红圈内的Wide部分采用了什么特征,它居然采用了两个id类特征的乘积,这两个id类特征是:
User Installed App 和 Impression App
这篇文章是Google的应用商店团队Google Play发表的,我们不难猜测Google的工程师使用这个组合特征的意图,他们是想发现当前曝光app和用户安装app的关联关系,以此来直接影响最终的得分。
但是两个id类特征向量进行组合,在维度爆炸的同时,会让原本已经非常稀疏的multihot特征向量,变得更加稀疏。正因如此,wide部分的权重数量其实是海量的。为了不把数量如此之巨的权重都搬到线上进行model serving,采用FTRL过滤掉哪些稀疏特征无疑是非常好的工程经验。
大家注意观察可以发现Deep部分的输入,要么是Age,#App Installs这些数值类特征,要么是已经降维并稠密化的Embedding向量,工程师们不会也不敢把过度稀疏的特征向量直接输入到Deep网络中。所以Deep部分不存在严重的特征稀疏问题,自然可以使用精度更好,更适用于深度学习训练的AdaGrad去训练。
泛化和记忆能力
我想到这应该把文首的问题回答清楚了。最后我想再说回所谓wide部分的“记忆能力”。其实大家可以看到,所谓的“记忆能力”,可以简单理解为发现“直接的”、“暴力的”、“显然的”关联规则的能力。比如该问题中,Google W&D期望在wide部分发现这样的规则:
用户安装了应用A,此时曝光应用B,用户安装的B概率大。
而Deep部分就更黑盒一些,它把能想到的所有特征扔进这个黑盒去做函数的拟合,显然这样的过程会“模糊”一些直接的因果关系,泛化成一些间接的,可能的相关性。
从这个角度来说,所谓“泛化能力”和“记忆能力”就更容易被直观的理解了。