广告技术的核心目标其实可以用一个公式来表达:核心技术 - 图1,其中核心技术 - 图2是用户,核心技术 - 图3是场景,核心技术 - 图4是广告,我们所要做的就是找到这样一个函数核心技术 - 图5,可以让用户在合适的场景下看到适合的广告。

技术演化

下图展示里各大公司采用了不同的技术道路,有走宏观特征+复杂模型的Yahoo和Microsoft,也有尝试微观特征+简单模型的Google+Baidu,当然走哪条路决定性因素是各公司的业务,但需要指出的是在2005-2015这十年间,大规模机器学习模型(特指浅层模型)一度统治着CTR预估领域,以G/B两家为代表的”大规模离散特征+特征工程+分布式线性LR模型”解法几乎成为了那个时代的标准解。相关的工作相信读者们耳熟能详,甚至据我所知今天业界的不少团队依然采用这样的技术。随着数据量、计算能力和技术的发展,大家殊途同归,都向着微观特征+复杂模型的方向发展。
技术演化.png

浅层模型

在互联网永不停歇的增长需求的驱动下,CTR预估模型(以下简称CTR模型)的发展也可谓一日千里,从2010年之前千篇一律的逻辑回归(Logistic Regression,LR),进化到因子分解机(Factorization Machine,FM)、梯度提升树(Gradient Boosting Decision Tree,GBDT),再到2015年之后深度学习的百花齐放,各种模型架构层出不穷。认真的回顾前深度学习时代的CTR模型仍是非常必要的。原因有两点:

  1. 即使是深度学习空前流行的今天,LR、FM等传统CTR模型仍然凭借其可解释性强、轻量级的训练部署要求、便于在线学习等不可替代的优势,拥有大量适用的应用场景。模型的应用不分新旧贵贱,熟悉每种模型的优缺点,能够灵活运用和改进不同的算法模型是算法工程师的基本要求。
  2. 传统CTR模型是深度学习CTR模型的基础。深度神经网络(Deep Nerual Network,DNN)从一个神经元生发而来,而LR正是单一神经元的经典结构;此外,影响力很大的FNN,DeepFM,NFM等深度学习模型更是与传统的FM模型有着千丝万缕的联系;更不要说各种梯度下降方法的一脉相承。所以说传统CTR模型是深度学习模型的地基和入口。

浅层模型.jpg

深度模型

随着微软的Deep Crossing,Google的Wide&Deep,以及FNN,PNN等一大批优秀的深度学习CTR预估模型在2016年被提出,计算广告和推荐系统领域全面进入了深度学习时代,时至今日,深度学习CTR模型已经成为广告和推荐领域毫无疑问的主流。在进入深度学习时代之后,CTR模型不仅在表达能力、模型效果上有了质的提升,而且大量借鉴并融合了深度学习在图像、语音以及自然语言处理方向的成果,在模型结构上进行了快速的演化。
深度模型.jpg

Source