一丶let与const
1.let命令
基本用法
let用来声明变量,它的用法类似于var
,但是所声明的变量,只在let
命令所在的代码块内有效。
如:
{
let a = 10;
var b = 1;
}
a // ReferenceError: a is not defined.
b // 1
for (let i = 0; i < 10; i++) {
// ...
}
console.log(i);
// ReferenceError: i is not defined
不存在变量提升
var
命令会发生“变量提升”现象,即变量可以在声明之前使用,值为undefined
。为了纠正这种现象,let
命令改变了语法行为,它所声明的变量一定要在声明后使用,否则报错。
// var 的情况
console.log(foo); // 输出undefined
var foo = 2;
// let 的情况
console.log(bar); // 报错ReferenceError
let bar = 2;
暂时性死区
var tmp = 123;
if (true) {
tmp = 'abc'; // ReferenceError
let tmp;
}
上面代码中,存在全局变量tmp
,但是块级作用域内let
又声明了一个局部变量tmp
,导致后者绑定这个块级作用域,所以在let
声明变量前,对tmp
赋值会报错。
ES6 明确规定,如果区块中存在let
和const
命令,这个区块对这些命令声明的变量,从一开始就形成了封闭作用域。凡是在声明之前就使用这些变量,就会报错。
总之,在代码块内,使用let
命令声明变量之前,该变量都是不可用的。这在语法上,称为“暂时性死区”(temporal dead zone,简称 TDZ)。
if (true) {
// TDZ开始
tmp = 'abc'; // ReferenceError
console.log(tmp); // ReferenceError
let tmp; // TDZ结束
console.log(tmp); // undefined
tmp = 123;
console.log(tmp); // 123
}
有些“死区”比较隐蔽,不太容易发现。
function bar(x = y, y = 2) {
return [x, y];
}
bar(); // 报错
上面代码中,调用bar
函数之所以报错(某些实现可能不报错),是因为参数x
默认值等于另一个参数y
,而此时y
还没有声明,属于“死区”。如果y
的默认值是x
,就不会报错,因为此时x
已经声明了。
不允许重复声明
let
不允许在相同作用域内,重复声明同一个变量。
// 报错
function func() {
let a = 10;
var a = 1;
}
// 报错
function func() {
let a = 10;
let a = 1;
}
因此,不能在函数内部重新声明参数。
function func(arg) {
let arg;
}
func() // 报错
function func(arg) {
{
let arg;
}
}
func() // 不报错
2.块级作用域
为什么需要块级作用域?
ES5 只有全局作用域和函数作用域,没有块级作用域,这带来很多不合理的场景。
第一种场景,内层变量可能会覆盖外层变量。
var tmp = new Date();
function f() {
console.log(tmp);
if (false) {
var tmp = 'hello world';
}
}
f(); // undefined
上面代码的原意是,if
代码块的外部使用外层的tmp
变量,内部使用内层的tmp
变量。但是,函数f
执行后,输出结果为undefined
,原因在于变量提升,导致内层的tmp
变量覆盖了外层的tmp
变量。
第二种场景,用来计数的循环变量泄露为全局变量。
var s = 'hello';
for (var i = 0; i < s.length; i++) {
console.log(s[i]);
}
console.log(i); // 5
上面代码中,变量i
只用来控制循环,但是循环结束后,它并没有消失,泄露成了全局变量。
ES6 的块级作用域
let
实际上为 JavaScript 新增了块级作用域。
function f1() {
let n = 5;
if (true) {
let n = 10;
}
console.log(n); // 5
}
上面的函数有两个代码块,都声明了变量n
,运行后输出 5。这表示外层代码块不受内层代码块的影响。如果两次都使用var
定义变量n
,最后输出的值才是 10。
ES6 允许块级作用域的任意嵌套。
{{{{
{let insane = 'Hello World'}
console.log(insane); // 报错
}}}};
上面代码使用了一个五层的块级作用域,每一层都是一个单独的作用域。第四层作用域无法读取第五层作用域的内部变量。
内层作用域可以定义外层作用域的同名变量。
{{{{
let insane = 'Hello World';
{let insane = 'Hello World'}
}}}};
块级作用域与函数声明
考虑到环境导致的行为差异太大,应该避免在块级作用域内声明函数。如果确实需要,也应该写成函数表达式,而不是函数声明语句。
// 块级作用域内部的函数声明语句,建议不要使用
{
let a = 'secret';
function f() {
return a;
}
}
// 块级作用域内部,优先使用函数表达式
{
let a = 'secret';
let f = function () {
return a;
};
}
另外,还有一个需要注意的地方。ES6 的块级作用域必须有大括号,如果没有大括号,JavaScript 引擎就认为不存在块级作用域。
// 第一种写法,报错
if (true) let x = 1;
// 第二种写法,不报错
if (true) {
let x = 1;
}
3.const命令
基本用法
const
声明一个只读的常量。一旦声明,常量的值就不能改变。
const PI = 3.1415;
PI // 3.1415
PI = 3;
// TypeError: Assignment to constant variable.
const foo;
// SyntaxError: Missing initializer in const declaration
上面代码表示,对于const
来说,只声明不赋值,就会报错。const
的作用域与let
命令相同:只在声明所在的块级作用域内有效。
if (true) {
const MAX = 5;
}
MAX // Uncaught ReferenceError: MAX is not defined
const
命令声明的常量也是不提升,同样存在暂时性死区,只能在声明的位置后面使用。
if (true) {
console.log(MAX); // ReferenceError
const MAX = 5;
}
const
声明的常量,也与let
一样不可重复声明。
var message = "Hello!";
let age = 25;
// 以下两行都会报错
const message = "Goodbye!";
const age = 30;
本质
const
实际上保证的,并不是变量的值不得改动,而是变量指向的那个内存地址所保存的数据不得改动。对于简单类型的数据(数值、字符串、布尔值),值就保存在变量指向的那个内存地址,因此等同于常量。但对于复合类型的数据(主要是对象和数组),变量指向的内存地址,保存的只是一个指向实际数据的指针,const
只能保证这个指针是固定的(即总是指向另一个固定的地址),至于它指向的数据结构是不是可变的,就完全不能控制了。因此,将一个对象声明为常量必须非常小心。
const foo = {};
// 为 foo 添加一个属性,可以成功
foo.prop = 123;
foo.prop // 123
// 将 foo 指向另一个对象,就会报错
foo = {}; // TypeError: "foo" is read-only
上面代码中,常量foo
储存的是一个地址,这个地址指向一个对象。不可变的只是这个地址,即不能把foo
指向另一个地址,但对象本身是可变的,所以依然可以为其添加新属性。
ES6 声明变量的六种方法
ES5 只有两种声明变量的方法:var
命令和function
命令。ES6 除了添加let
和const
命令,后面章节还会提到,另外两种声明变量的方法:import
命令和class
命令。所以,ES6 一共有 6 种声明变量的方法。
4.顶层对象的属性
ES6 规定,为了保持兼容性,var
命令和function
命令声明的全局变量,依旧是顶层对象的属性;另一方面规定,let
命令、const
命令、class
命令声明的全局变量,不属于顶层对象的属性。也就是说,从 ES6 开始,全局变量将逐步与顶层对象的属性脱钩。
var a = 1;
// 如果在 Node 的 REPL 环境,可以写成 global.a
// 或者采用通用方法,写成 this.a
window.a // 1
let b = 1;
window.b // undefined
上面代码中,全局变量a
由var
命令声明,所以它是顶层对象的属性;全局变量b
由let
命令声明,所以它不是顶层对象的属性,返回undefined
。
二丶变量的解构赋值
1.数组的解构赋值
基本用法
ES6 允许按照一定模式,从数组和对象中提取值,对变量进行赋值,这被称为解构(Destructuring)。
let [a, b, c] = [1, 2, 3];
上面代码表示,可以从数组中提取值,按照对应位置,对变量赋值。
本质上,这种写法属于“模式匹配”,只要等号两边的模式相同,左边的变量就会被赋予对应的值。下面是一些使用嵌套数组进行解构的例子。
let [foo, [[bar], baz]] = [1, [[2], 3]];
foo // 1
bar // 2
baz // 3
let [ , , third] = ["foo", "bar", "baz"];
third // "baz"
let [x, , y] = [1, 2, 3];
x // 1
y // 3
let [head, ...tail] = [1, 2, 3, 4];
head // 1
tail // [2, 3, 4]
let [x, y, ...z] = ['a'];
x // "a"
y // undefined
z // []
如果解构不成功,变量的值就等于undefined
。
let [foo] = [];
let [bar, foo] = [1];
以上两种情况都属于解构不成功,foo
的值都会等于undefined
。
另一种情况是不完全解构,即等号左边的模式,只匹配一部分的等号右边的数组。这种情况下,解构依然可以成功。
let [x, y] = [1, 2, 3];
x // 1
y // 2
let [a, [b], d] = [1, [2, 3], 4];
a // 1
b // 2
d // 4
上面两个例子,都属于不完全解构,但是可以成功。
如果等号的右边不是数组(或者严格地说,不是可遍历的结构,参见《Iterator》一章),那么将会报错。
// 报错
let [foo] = 1;
let [foo] = false;
let [foo] = NaN;
let [foo] = undefined;
let [foo] = null;
let [foo] = {};
上面的语句都会报错,因为等号右边的值,要么转为对象以后不具备 Iterator 接口(前五个表达式),要么本身就不具备 Iterator 接口(最后一个表达式)。
对于 Set 结构,也可以使用数组的解构赋值。
let [x, y, z] = new Set(['a', 'b', 'c']);
x // "a"
事实上,只要某种数据结构具有 Iterator 接口,都可以采用数组形式的解构赋值。
function* fibs() {
let a = 0;
let b = 1;
while (true) {
yield a;
[a, b] = [b, a + b];
}
}
let [first, second, third, fourth, fifth, sixth] = fibs();
sixth // 5
上面代码中,fibs
是一个 Generator 函数(参见《Generator 函数》一章),原生具有 Iterator 接口。解构赋值会依次从这个接口获取值。
默认值
解构赋值允许指定默认值。
let [foo = true] = [];
foo // true
let [x, y = 'b'] = ['a']; // x='a', y='b'
let [x, y = 'b'] = ['a', undefined]; // x='a', y='b'
注意,ES6 内部使用严格相等运算符(===
),判断一个位置是否有值。所以,只有当一个数组成员严格等于undefined
,默认值才会生效。
let [x = 1] = [undefined];
x // 1
let [x = 1] = [null];
x // null
上面代码中,如果一个数组成员是null
,默认值就不会生效,因为null
不严格等于undefined
。
如果默认值是一个表达式,那么这个表达式是惰性求值的,即只有在用到的时候,才会求值。
function f() {
console.log('aaa');
}
let [x = f()] = [1];
上面代码中,因为x
能取到值,所以函数f
根本不会执行。上面的代码其实等价于下面的代码。
let x;
if ([1][0] === undefined) {
x = f();
} else {
x = [1][0];
}
默认值可以引用解构赋值的其他变量,但该变量必须已经声明。
let [x = 1, y = x] = []; // x=1; y=1
let [x = 1, y = x] = [2]; // x=2; y=2
let [x = 1, y = x] = [1, 2]; // x=1; y=2
let [x = y, y = 1] = []; // ReferenceError: y is not defined
上面最后一个表达式之所以会报错,是因为x
用y
做默认值时,y
还没有声明。
2.对象的解构赋值
简介
解构不仅可以用于数组,还可以用于对象。
let { foo, bar } = { foo: 'aaa', bar: 'bbb' };
foo // "aaa"
bar // "bbb"
对象的解构与数组有一个重要的不同。数组的元素是按次序排列的,变量的取值由它的位置决定;而对象的属性没有次序,变量必须与属性同名,才能取到正确的值。
let { bar, foo } = { foo: 'aaa', bar: 'bbb' };
foo // "aaa"
bar // "bbb"
let { baz } = { foo: 'aaa', bar: 'bbb' };
baz // undefined
上面代码的第一个例子,等号左边的两个变量的次序,与等号右边两个同名属性的次序不一致,但是对取值完全没有影响。第二个例子的变量没有对应的同名属性,导致取不到值,最后等于undefined
。
如果解构失败,变量的值等于undefined
。
let {foo} = {bar: 'baz'};
foo // undefined
上面代码中,等号右边的对象没有foo
属性,所以变量foo
取不到值,所以等于undefined
。
对象的解构赋值,可以很方便地将现有对象的方法,赋值到某个变量。
// 例一
let { log, sin, cos } = Math;
// 例二
const { log } = console;
log('hello') // hello
上面代码的例一将Math
对象的对数、正弦、余弦三个方法,赋值到对应的变量上,使用起来就会方便很多。例二将console.log
赋值到log
变量。
如果变量名与属性名不一致,必须写成下面这样。
let { foo: baz } = { foo: 'aaa', bar: 'bbb' };
baz // "aaa"
let obj = { first: 'hello', last: 'world' };
let { first: f, last: l } = obj;
f // 'hello'
l // 'world'
这实际上说明,对象的解构赋值是下面形式的简写(参见《对象的扩展》一章)。
let { foo: foo, bar: bar } = { foo: 'aaa', bar: 'bbb' };
也就是说,对象的解构赋值的内部机制,是先找到同名属性,然后再赋给对应的变量。真正被赋值的是后者,而不是前者。
let { foo: baz } = { foo: 'aaa', bar: 'bbb' };
baz // "aaa"
foo // error: foo is not defined
上面代码中,foo
是匹配的模式,baz
才是变量。真正被赋值的是变量baz
,而不是模式foo
。
与数组一样,解构也可以用于嵌套结构的对象。
let obj = {
p: [
'Hello',
{ y: 'World' }
]
};
let { p: [x, { y }] } = obj;
x // "Hello"
y // "World"
注意,这时p
是模式,不是变量,因此不会被赋值。如果p
也要作为变量赋值,可以写成下面这样。
let obj = {
p: [
'Hello',
{ y: 'World' }
]
};
let { p, p: [x, { y }] } = obj;
x // "Hello"
y // "World"
p // ["Hello", {y: "World"}]
下面是另一个例子。
const node = {
loc: {
start: {
line: 1,
column: 5
}
}
};
let { loc, loc: { start }, loc: { start: { line }} } = node;
line // 1
loc // Object {start: Object}
start // Object {line: 1, column: 5}
上面代码有三次解构赋值,分别是对loc
、start
、line
三个属性的解构赋值。注意,最后一次对line
属性的解构赋值之中,只有line
是变量,loc
和start
都是模式,不是变量。
下面是嵌套赋值的例子。
let obj = {};
let arr = [];
({ foo: obj.prop, bar: arr[0] } = { foo: 123, bar: true });
obj // {prop:123}
arr // [true]
如果解构模式是嵌套的对象,而且子对象所在的父属性不存在,那么将会报错。
// 报错
let {foo: {bar}} = {baz: 'baz'};
上面代码中,等号左边对象的foo
属性,对应一个子对象。该子对象的bar
属性,解构时会报错。原因很简单,因为foo
这时等于undefined
,再取子属性就会报错。
注意,对象的解构赋值可以取到继承的属性。
const obj1 = {};
const obj2 = { foo: 'bar' };
Object.setPrototypeOf(obj1, obj2);
const { foo } = obj1;
foo // "bar"
上面代码中,对象obj1
的原型对象是obj2
。foo
属性不是obj1
自身的属性,而是继承自obj2
的属性,解构赋值可以取到这个属性。
默认值
对象的解构也可以指定默认值。
var {x = 3} = {};
x // 3
var {x, y = 5} = {x: 1};
x // 1
y // 5
var {x: y = 3} = {};
y // 3
var {x: y = 3} = {x: 5};
y // 5
var { message: msg = 'Something went wrong' } = {};
msg // "Something went wrong"
默认值生效的条件是,对象的属性值严格等于undefined
。
var {x = 3} = {x: undefined};
x // 3
var {x = 3} = {x: null};
x // null
上面代码中,属性x
等于null
,因为null
与undefined
不严格相等,所以是个有效的赋值,导致默认值3
不会生效。
注意点
(1)如果要将一个已经声明的变量用于解构赋值,必须非常小心。
// 错误的写法
let x;
{x} = {x: 1};
// SyntaxError: syntax error
上面代码的写法会报错,因为 JavaScript 引擎会将{x}
理解成一个代码块,从而发生语法错误。只有不将大括号写在行首,避免 JavaScript 将其解释为代码块,才能解决这个问题。
// 正确的写法
let x;
({x} = {x: 1});
上面代码将整个解构赋值语句,放在一个圆括号里面,就可以正确执行。关于圆括号与解构赋值的关系,参见下文。
(2)解构赋值允许等号左边的模式之中,不放置任何变量名。因此,可以写出非常古怪的赋值表达式。
({} = [true, false]);
({} = 'abc');
({} = []);
上面的表达式虽然毫无意义,但是语法是合法的,可以执行。
(3)由于数组本质是特殊的对象,因此可以对数组进行对象属性的解构。
let arr = [1, 2, 3];
let {0 : first, [arr.length - 1] : last} = arr;
first // 1
last // 3
上面代码对数组进行对象解构。数组arr
的0
键对应的值是1
,[arr.length - 1]
就是2
键,对应的值是3
。方括号这种写法,属于“属性名表达式”
3.字符串的解构赋值
字符串也可以解构赋值。这是因为此时,字符串被转换成了一个类似数组的对象。
const [a, b, c, d, e] = 'hello';
a // "h"
b // "e"
c // "l"
d // "l"
e // "o"
类似数组的对象都有一个length
属性,因此还可以对这个属性解构赋值。
let {length : len} = 'hello';
len // 5
4.数值和布尔值的解构赋值
解构赋值时,如果等号右边是数值和布尔值,则会先转为对象。
let {toString: s} = 123;
s === Number.prototype.toString // true
let {toString: s} = true;
s === Boolean.prototype.toString // true
上面代码中,数值和布尔值的包装对象都有toString
属性,因此变量s
都能取到值。
解构赋值的规则是,只要等号右边的值不是对象或数组,就先将其转为对象。由于undefined
和null
无法转为对象,所以对它们进行解构赋值,都会报错。
let { prop: x } = undefined; // TypeError
let { prop: y } = null; // TypeError
5.函数参数的解构赋值
函数的参数也可以使用解构赋值。
function add([x, y]){
return x + y;
}
add([1, 2]); // 3
上面代码中,函数add
的参数表面上是一个数组,但在传入参数的那一刻,数组参数就被解构成变量x
和y
。对于函数内部的代码来说,它们能感受到的参数就是x
和y
。
下面是另一个例子。
[[1, 2], [3, 4]].map(([a, b]) => a + b);
// [ 3, 7 ]
函数参数的解构也可以使用默认值。
function move({x = 0, y = 0} = {}) {
return [x, y];
}
move({x: 3, y: 8}); // [3, 8]
move({x: 3}); // [3, 0]
move({}); // [0, 0]
move(); // [0, 0]
上面代码中,函数move
的参数是一个对象,通过对这个对象进行解构,得到变量x
和y
的值。如果解构失败,x
和y
等于默认值。
注意,下面的写法会得到不一样的结果。
function move({x, y} = { x: 0, y: 0 }) {
return [x, y];
}
move({x: 3, y: 8}); // [3, 8]
move({x: 3}); // [3, undefined]
move({}); // [undefined, undefined]
move(); // [0, 0]
上面代码是为函数move
的参数指定默认值,而不是为变量x
和y
指定默认值,所以会得到与前一种写法不同的结果。undefined
就会触发函数参数的默认值。
[1, undefined, 3].map((x = 'yes') => x);
// [ 1, 'yes', 3 ]
6.圆括号问题
解构赋值虽然很方便,但是解析起来并不容易。对于编译器来说,一个式子到底是模式,还是表达式,没有办法从一开始就知道,必须解析到(或解析不到)等号才能知道。
由此带来的问题是,如果模式中出现圆括号怎么处理。ES6 的规则是,只要有可能导致解构的歧义,就不得使用圆括号。
但是,这条规则实际上不那么容易辨别,处理起来相当麻烦。因此,建议只要有可能,就不要在模式中放置圆括号。
7.用途
变量的解构赋值用途很多。
(1)交换变量的值
let x = 1;
let y = 2;
[x, y] = [y, x];
上面代码交换变量x
和y
的值,这样的写法不仅简洁,而且易读,语义非常清晰。
(2)从函数返回多个值
函数只能返回一个值,如果要返回多个值,只能将它们放在数组或对象里返回。有了解构赋值,取出这些值就非常方便。
// 返回一个数组
function example() {
return [1, 2, 3];
}
let [a, b, c] = example();
// 返回一个对象
function example() {
return {
foo: 1,
bar: 2
};
}
let { foo, bar } = example();
(3)函数参数的定义
解构赋值可以方便地将一组参数与变量名对应起来。
// 参数是一组有次序的值
function f([x, y, z]) { ... }
f([1, 2, 3]);
// 参数是一组无次序的值
function f({x, y, z}) { ... }
f({z: 3, y: 2, x: 1});
(4)提取 JSON 数据
解构赋值对提取 JSON 对象中的数据,尤其有用。
let jsonData = {
id: 42,
status: "OK",
data: [867, 5309]
};
let { id, status, data: number } = jsonData;
console.log(id, status, number);
// 42, "OK", [867, 5309]
上面代码可以快速提取 JSON 数据的值。
(5)函数参数的默认值
jQuery.ajax = function (url, {
async = true,
beforeSend = function () {},
cache = true,
complete = function () {},
crossDomain = false,
global = true,
// ... more config
} = {}) {
// ... do stuff
};
指定参数的默认值,就避免了在函数体内部再写var foo = config.foo || 'default foo';
这样的语句。
(6)遍历 Map 结构
任何部署了 Iterator 接口的对象,都可以用for...of
循环遍历。Map 结构原生支持 Iterator 接口,配合变量的解构赋值,获取键名和键值就非常方便。
const map = new Map();
map.set('first', 'hello');
map.set('second', 'world');
for (let [key, value] of map) {
console.log(key + " is " + value);
}
// first is hello
// second is world
如果只想获取键名,或者只想获取键值,可以写成下面这样。
// 获取键名
for (let [key] of map) {
// ...
}
// 获取键值
for (let [,value] of map) {
// ...
}
(7)输入模块的指定方法
加载模块时,往往需要指定输入哪些方法。解构赋值使得输入语句非常清晰。
const { SourceMapConsumer, SourceNode } = require("source-map");
三丶字符串的扩展
1.字符串的遍历器接口
ES6 为字符串添加了遍历器接口(详见《Iterator》一章),使得字符串可以被for...of
循环遍历。
for (let codePoint of 'foo') {
console.log(codePoint)
}
// "f"
// "o"
// "o"
除了遍历字符串,这个遍历器最大的优点是可以识别大于0xFFFF
的码点,传统的for
循环无法识别这样的码点。
let text = String.fromCodePoint(0x20BB7);
for (let i = 0; i < text.length; i++) {
console.log(text[i]);
}
// " "
// " "
for (let i of text) {
console.log(i);
}
// "𠮷"
上面代码中,字符串text
只有一个字符,但是for
循环会认为它包含两个字符(都不可打印),而for...of
循环会正确识别出这一个字符。
四丶函数的扩展
1.作用域
一旦设置了参数的默认值,函数进行声明初始化时,参数会形成一个单独的作用域(context)。等到初始化结束,这个作用域就会消失。这种语法行为,在不设置参数默认值时,是不会出现的。
var x = 1;
function f(x, y = x) {
console.log(y);
}
f(2) // 2
上面代码中,参数y
的默认值等于变量x
。调用函数f
时,参数形成一个单独的作用域。在这个作用域里面,默认值变量x
指向第一个参数x
,而不是全局变量x
,所以输出是2
。
再看下面的例子。
let x = 1;
function f(y = x) {
let x = 2;
console.log(y);
}
f() // 1
上面代码中,函数f
调用时,参数y = x
形成一个单独的作用域。这个作用域里面,变量x
本身没有定义,所以指向外层的全局变量x
。函数调用时,函数体内部的局部变量x
影响不到默认值变量x
。
如果此时,全局变量x
不存在,就会报错。
function f(y = x) {
let x = 2;
console.log(y);
}
f() // ReferenceError: x is not defined
下面这样写,也会报错。
var x = 1;
function foo(x = x) {
// ...
}
foo() // ReferenceError: x is not defined
上面代码中,参数x = x
形成一个单独作用域。实际执行的是let x = x
,由于暂时性死区的原因,这行代码会报错”x 未定义“。
如果参数的默认值是一个函数,该函数的作用域也遵守这个规则。请看下面的例子。
let foo = 'outer';
function bar(func = () => foo) {
let foo = 'inner';
console.log(func());
}
bar(); // outer
上面代码中,函数bar
的参数func
的默认值是一个匿名函数,返回值为变量foo
。函数参数形成的单独作用域里面,并没有定义变量foo
,所以foo
指向外层的全局变量foo
,因此输出outer
。
如果写成下面这样,就会报错。
function bar(func = () => foo) {
let foo = 'inner';
console.log(func());
}
bar() // ReferenceError: foo is not defined
上面代码中,匿名函数里面的foo
指向函数外层,但是函数外层并没有声明变量foo
,所以就报错了。
下面是一个更复杂的例子。
var x = 1;
function foo(x, y = function() { x = 2; }) {
var x = 3;
y();
console.log(x);
}
foo() // 3
x // 1
上面代码中,函数foo
的参数形成一个单独作用域。这个作用域里面,首先声明了变量x
,然后声明了变量y
,y
的默认值是一个匿名函数。这个匿名函数内部的变量x
,指向同一个作用域的第一个参数x
。函数foo
内部又声明了一个内部变量x
,该变量与第一个参数x
由于不是同一个作用域,所以不是同一个变量,因此执行y
后,内部变量x
和外部全局变量x
的值都没变。
如果将var x = 3
的var
去除,函数foo
的内部变量x
就指向第一个参数x
,与匿名函数内部的x
是一致的,所以最后输出的就是2
,而外层的全局变量x
依然不受影响。
var x = 1;
function foo(x, y = function() { x = 2; }) {
x = 3;
y();
console.log(x);
}
foo() // 2
x // 1
2.rest 参数
ES6 引入 rest 参数(形式为...变量名
),用于获取函数的多余参数,这样就不需要使用arguments
对象了。rest 参数搭配的变量是一个数组,该变量将多余的参数放入数组中。
function add(...values) {
let sum = 0;
for (var val of values) {
sum += val;
}
return sum;
}
add(2, 5, 3) // 10
上面代码的add
函数是一个求和函数,利用 rest 参数,可以向该函数传入任意数目的参数。
下面是一个 rest 参数代替arguments
变量的例子。
// arguments变量的写法
function sortNumbers() {
return Array.prototype.slice.call(arguments).sort();
}
// rest参数的写法
const sortNumbers = (...numbers) => numbers.sort();
上面代码的两种写法,比较后可以发现,rest 参数的写法更自然也更简洁。arguments
对象不是数组,而是一个类似数组的对象。所以为了使用数组的方法,必须使用Array.prototype.slice.call
先将其转为数组。rest 参数就不存在这个问题,它就是一个真正的数组,数组特有的方法都可以使用。下面是一个利用 rest 参数改写数组push
方法的例子。
function push(array, ...items) {
items.forEach(function(item) {
array.push(item);
console.log(item);
});
}
var a = [];
push(a, 1, 2, 3)
注意,rest 参数之后不能再有其他参数(即只能是最后一个参数),否则会报错。
// 报错
function f(a, ...b, c) {
// ...
}
函数的length
属性,不包括 rest 参数。
(function(a) {}).length // 1
(function(...a) {}).length // 0
(function(a, ...b) {}).length // 1
3.箭头函数
基本用法
ES6 允许使用“箭头”(=>
)定义函数。
var f = v => v;
// 等同于
var f = function (v) {
return v;
};
使用注意点
箭头函数有几个使用注意点。
(1)函数体内的this
对象,就是定义时所在的对象,而不是使用时所在的对象。
(2)不可以当作构造函数,也就是说,不可以使用new
命令,否则会抛出一个错误。
(3)不可以使用arguments
对象,该对象在函数体内不存在。如果要用,可以用 rest 参数代替。
(4)不可以使用yield
命令,因此箭头函数不能用作 Generator 函数。
4.尾调用优化
什么是尾调用?
尾调用(Tail Call)是函数式编程的一个重要概念,本身非常简单,一句话就能说清楚,就是指某个函数的最后一步是调用另一个函数。
function f(x){
return g(x);
}
上面代码中,函数f
的最后一步是调用函数g
,这就叫尾调用。
以下三种情况,都不属于尾调用。
// 情况一
function f(x){
let y = g(x);
return y;
}
// 情况二
function f(x){
return g(x) + 1;
}
// 情况三
function f(x){
g(x);
}
尾递归
函数调用自身,称为递归。如果尾调用自身,就称为尾递归。
递归非常耗费内存,因为需要同时保存成千上百个调用帧,很容易发生“栈溢出”错误(stack overflow)。但对于尾递归来说,由于只存在一个调用帧,所以永远不会发生“栈溢出”错误。
function factorial(n) {
if (n === 1) return 1;
return n * factorial(n - 1);
}
factorial(5) // 120
上面代码是一个阶乘函数,计算n
的阶乘,最多需要保存n
个调用记录,复杂度 O(n) 。
如果改写成尾递归,只保留一个调用记录,复杂度 O(1) 。
function factorial(n, total) {
if (n === 1) return total;
return factorial(n - 1, n * total);
}
factorial(5, 1) // 120
还有一个比较著名的例子,就是计算 Fibonacci 数列,也能充分说明尾递归优化的重要性。
非尾递归的 Fibonacci 数列实现如下。
function Fibonacci (n) {
if ( n <= 1 ) {return 1};
return Fibonacci(n - 1) + Fibonacci(n - 2);
}
Fibonacci(10) // 89
Fibonacci(100) // 超时
Fibonacci(500) // 超时
尾递归优化过的 Fibonacci 数列实现如下。
function Fibonacci2 (n , ac1 = 1 , ac2 = 1) {
if( n <= 1 ) {return ac2};
return Fibonacci2 (n - 1, ac2, ac1 + ac2);
}
Fibonacci2(100) // 573147844013817200000
Fibonacci2(1000) // 7.0330367711422765e+208
Fibonacci2(10000) // Infinity
由此可见,“尾调用优化”对递归操作意义重大,所以一些函数式编程语言将其写入了语言规格。ES6 亦是如此,第一次明确规定,所有 ECMAScript 的实现,都必须部署“尾调用优化”。这就是说,ES6 中只要使用尾递归,就不会发生栈溢出(或者层层递归造成的超时),相对节省内存。