一.决策树的构造
from __future__ import print_function
print(__doc__)
import operator
from math import log
import decisionTreePlot as dtPlot
from collections import Counter
def createDataSet():
labels = ['no surfacing', 'flippers']
return dataSet, labels
def calcShannonEnt(dataSet):
numEntries = len(dataSet)
labelCounts = {}
for featVec in dataSet:
currentLabel = featVec[-1]
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
# 对于label标签的占比,求出label标签的香农熵
shannonEnt = 0.0
for key in labelCounts:
prob = float(labelCounts[key])/numEntries
shannonEnt -= prob * log(prob, 2)
return shannonEnt
def splitDataSet(dataSet, index, value):
retDataSet = []
for featVec in dataSet:
if featVec[index] == value:
reducedFeatVec = featVec[:index]
reducedFeatVec.extend(featVec[index+1:])
retDataSet.append(reducedFeatVec)
return retDataSet
def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0]) - 1
baseEntropy = calcShannonEnt(dataSet)
bestInfoGain, bestFeature = 0.0, -1
for i in range(numFeatures):
featList = [example[i] for example in dataSet]
uniqueVals = set(featList)
newEntropy = 0.0
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet)/float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet)
infoGain = baseEntropy - newEntropy
print('infoGain=', infoGain, 'bestFeature=', i, baseEntropy, newEntropy)
if (infoGain > bestInfoGain):
bestInfoGain = infoGain
bestFeature = i
return bestFeature
def majorityCnt(classList):
classCount = {}
for vote in classList:
if vote not in classCount.keys():
classCount[vote] = 0
classCount[vote] += 1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
def createTree(dataSet, labels):
classList = [example[-1] for example in dataSet]
if classList.count(classList[0]) == len(classList):
return classList[0]
if len(dataSet[0]) == 1:
return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet)
bestFeatLabel = labels[bestFeat]
myTree = {bestFeatLabel: {}}
del(labels[bestFeat])
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
for value in uniqueVals:
subLabels = labels[:]
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
return myTree
def classify(inputTree, featLabels, testVec):
firstStr = inputTree.keys()[0]
secondDict = inputTree[firstStr]
featIndex = featLabels.index(firstStr)
key = testVec[featIndex]
valueOfFeat = secondDict[key]
print('+++', firstStr, 'xxx', secondDict, '---', key, '>>>', valueOfFeat)
if isinstance(valueOfFeat, dict):
classLabel = classify(valueOfFeat, featLabels, testVec)
else:
classLabel = valueOfFeat
return classLabel
def storeTree(inputTree, filename):
import pickle
fw = open(filename, 'wb')
pickle.dump(inputTree, fw)
fw.close()
with open(filename, 'wb') as fw:
pickle.dump(inputTree, fw)
def grabTree(filename):
import pickle
fr = open(filename,'rb')
return pickle.load(fr)
def fishTest():
import copy
myTree = createTree(myDat, copy.deepcopy(labels))
print(myTree)
print(classify(myTree, labels, [1, 1]))
# 获得树的高度
print(get_tree_height(myTree))
# 画图可视化展现
dtPlot.createPlot(myTree)
def ContactLensesTest():
fr = open('data/3.DecisionTree/lenses.txt')
lenses = [inst.strip().split('\t') for inst in fr.readlines()]
lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate']
lensesTree = createTree(lenses, lensesLabels)
print(lensesTree)
# 画图可视化展现
dtPlot.createPlot(lensesTree)
def get_tree_height(tree):
if not isinstance(tree, dict):
return 1
child_trees = tree.values()[0].values()
# 遍历子树, 获得子树的最大高度
max_height = 0
for child_tree in child_trees:
child_tree_height = get_tree_height(child_tree)
if child_tree_height > max_height:
max_height = child_tree_height
return max_height + 1
if __name__ == "__main__":
fishTest()
# ContactLensesTest()