一.k-近邻算法概述
简单地说,k-近邻算法采用测量不同特征值之间的距离方法进行分类。
1.准备:使用Python导入数据
from numpy import *
import operator
def createDataSet():
group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels = ['A','A','B','B']
return group,labels
Microsoft Windows [版本 10.0.18362.476]
(c) 2019 Microsoft Corporation。保留所有权利。
C:\Users\Joish>C:\Users\Joish\AppData\Local\Programs\Python\Python37-32\python.exe
Python 3.7.4 (tags/v3.7.4:e09359112e, Jul 8 2019, 19:29:22) [MSC v.1916 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import kNN
>>> group,labels = kNN.createDataSet()
>>> group
array([[1. , 1.1],
[1. , 1. ],
[0. , 0. ],
[0. , 0.1]])
>>> labels
['A', 'A', 'B', 'B']
>>>
2.实施kNN算法
对未知类别属性的数据集中的每个点依次执行以下操作:
(1) 计算已知类别数据集中的点与当前点之间的距离;
(2) 按照距离递增次序排序;
(3) 选取与当前点距离最小的k个点;
(4) 确定前k个点所在类别的出现频率;
(5) 返回前k个点出现频率最高的类别作为当前点的预测分类。
from numpy import *
import operator
def createDataSet():
group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels = ['A','A','B','B']
return group,labels
def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
sortedDisIndicies = distances.argsort()
classCount={}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.items(),
key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
tile()函数:
https://blog.csdn.net/qq_38669138/article/details/79085700
二.示例:使用k-近邻算法改进约会网站的配对效果
def file2matrix(filename):
fr = open(filename)
arrayOLines = fr.readlines()
numberOfLines = len(arrayOLines)
returnMat = zeros((numberOfLines, 3))
classLabelVector = []
index = 0
for line in arrayOLines:
line = line.strip()
listFromLine = line.split('\t')
returnMat[index, :] = listFromLine[0:3]
classLabelVector.append(basestring(listFromLine[-1]))
index += 1
return returnMat, classLabelVector
>>> reload kNN
>>> datingDataMat, datingLabels = kNN.file2matrix('datingTestSet2.txt')
>>> import matplotlib
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> from numpy import *
>>> ax.scatter(datingDataMat[:,1], datingDataMat[:,2], 15.0*array(datingLabels), 15.0*array(datingLabels))
>>> plt.show()
def autoNorm(dataSet):
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normDataSet = np.zeros(np.shape(dataSet))
m = dataSet.shape[0]
normDataSet = dataSet - np.tile(minVals, (m, 1))
normDataSet = normDataSet/np.tile(ranges, (m, 1))
return normDataSet, ranges, minVals
def datingClassTest():
hoRatio = 0.50
datingDataMat, datingLabels = file2matrix(datingTestSet.txt')
normMat, ranges, minVals = autoNorm(datingDataMat)
m = normMat.shape[0]
numTestVecs = int(m * hoRatio)
errorCount = 0.0
for i in range(numTestVecs):
classifierResult = classify0(normMat[i, :], normMat[numTestVecs:m, :],
datingLabels[numTestVecs:m], 3)
print("the classifier came back with: %d, the real answer is: %d" % (
classifierResult, datingLabels[i]))
if classifierResult != datingLabels[i]:
errorCount += 1.0
print("the total error rate is: %f" % (errorCount / float(numTestVecs)))
print(errorCount)
def classifyPerson():
resultList = ['not at all', 'in small doses', 'in large doses']
percentTats = float(input("percentage of time spent playing video games ?"))
ffMiles = float(input("frequent filer miles earned per year?"))
iceCream = float(input("liters of ice cream consumed per year?"))
datingDataMat, datingLables = file2matrix('G:/python/machinelearninginaction/Ch02/datingTestSet2.txt')
normMat ,ranges, minVals = autoNorm(datingDataMat)
inArr = np.array([ffMiles, percentTats, iceCream])
classifierResult = classify0((inArr-minVals)/ranges, normMat, datingLables, 3)
print ("You will probably like this person: ", resultList[classifierResult - 1])
注:遇到的坑实在太多,运行起来出了很多问题,至今无法一一解决,还需要再思考一下。