

def loadDataSet(): postingList = [['my', 'dog', 'has', 'flea', \ 'problems', 'help', 'please'], ['maybe', 'not', 'take', 'him', \ 'to', 'dog', 'park', 'stupid'], ['my', 'dalmation', 'is', 'so', 'cute', \ 'I', 'love', 'him'], ['stop', 'posting', 'stupid', 'worthless', 'garbage'], ['mr', 'licks', 'ate', 'my', 'steak', 'how', \ 'to', 'stop', 'him'], ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']] classVec = [0,1,0,1,0,1] #1 代表侮辱性文字,0代表正常言论 return postingList,classVecdef createVocabList(dataSet): vocabSet = set([]) for document in dataSet: vocabSet = vacabSet | set(document) return list(vocabSet)def setOfWords2Vec(vocabList, inputSet): returnVec = [0]*len(vocabList) for word in inputSet: if word in vocabList: returnVec[vocabList.index(word)] = 1 else: print('the word: {}is not in my Vocabulary!' .format(word)) return returnVecdef trainNB0(trainMatrix, trainCategory): numTrainDocs = len(trainMatrix) numWords = len(trainMatrix[0]) pAbusive = sum(trainCategory)/float(numTrainDocs) p0Num = zeros(numWords); p1Num = zeros(numWords) p0Denom = 0.0; p1Denom = 0.0 for i in range(numTrainDocs): if trainCategory[i] ==1: p1Num += trainMatrix[i] p1Denom += sum(trainMatrix[i]) else: p0Num += trainMatrix[i] p0Denom += sum(trainMatrix[i]) p1Vect = p1Num/p1Denom p0Vect = p0Num/p0Denom return p0Vect, p1Vect, pAbusivedef classifyNB(vec2Classify, p0Vec, p1Vec, pClass1): p1 = sum(vec2Classify * p1Vec) + log(pClass1) p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1) if p1 > p0: return 1 else: return 0def testingNB(): listOPosts, listClasses = loadDataSet() myVocabList = createVocabList(listOPosts) trainMat = [] for postinDoc in listOPosts: trainMat.append(setOfWords2Vec(myVocabList, postinDoc)) p0V, p1V, pAb = trainNB0(trainMat, listClasses) testEntry = ['love', 'my', 'dalmation'] thisDoc = array(setOfWords2Vec(myVocabList, testEntry)) print(testEntry,'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb)) testEntry = ['stupid', 'garbage'] thisDoc = array(setOfWords2Vec(myVocabList, testEntry)) print(testEntry,'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb))def bagOfWords2VecMN(vocabList, inputSet): returnVec = [0]*len(vocabList) for word in inputSet: if word in vocabList: returnVec[vocabList.index(word)] += 1 return returnVec