1. 第1章 概率论的基本概念

研究和揭示随机现象统计规律性(随机现象有其偶然性的一面,也有其必然性的一面,这种必然性表现为大量观察或试验中随机事件发生的频率的稳定性,即一个随机事件发生的频率经常在某个定值附近摆动,而且,试验次数越多,一般摆动越少,这种规律性我们称之为统计规律性。的一门学科

1.1 基本概念

随机试验:1.可以重复;2.总体明确;3.单个未知。
样本空间:随机试验E的所有基本结果组成的集合为E的样本空间。
样本点:样本空间的元素称为样本点或基本事件。
随机事件:随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件(简称事件)。随机事件通常用大写英文字母A、B、C等表示。含有多个样本点的随机事件称为复合事件。
事件发生:
基本事件:仅含一个样本点的随机事件称为基本事件
必然事件:
不可能事件:
差事件:
不相容事件:
对立事件:
逆事件:

1.2 频率和概率

在相同条件下,进行了概率论与数理统计 - 图1次试验,在这概率论与数理统计 - 图2次试验中,事件A发生的次数概率论与数理统计 - 图3称为A发生的频数,比值概率论与数理统计 - 图4称为A发生的频率,并记成概率论与数理统计 - 图5
对随机试验概率论与数理统计 - 图6的每一事件概率论与数理统计 - 图7都赋予一个实数,记为概率论与数理统计 - 图8,称为时间概率论与数理统计 - 图9的概率。集合函数概率论与数理统计 - 图10满足下列条件:
①非负性:概率论与数理统计 - 图11
②规范性:概率论与数理统计 - 图12
③可列可加性:概率论与数理统计 - 图13

概率论与数理统计 - 图14时频率概率论与数理统计 - 图15在一定意义下接近于概率概率论与数理统计 - 图16
加法公式概率论与数理统计 - 图17%22%20aria-hidden%3D%22true%22%3E%0A%3Cg%20transform%3D%22translate(0%2C2945)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ4-23A7%22%20x%3D%220%22%20y%3D%22-900%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(0%2C-1801.5813263214177)%20scale(1%2C3.0243772550527903)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ4-23AA%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ4-23A8%22%20x%3D%220%22%20y%3D%22-2946%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(0%2C-4497.430802448416)%20scale(1%2C3.0243772550527903)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ4-23AA%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ4-23A9%22%20x%3D%220%22%20y%3D%22-4492%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(1056%2C0)%22%3E%0A%3Cg%20transform%3D%22translate(-11%2C0)%22%3E%0A%3Cg%20transform%3D%22translate(4668%2C2084)%22%3E%0A%3Ctext%20font-family%3D%22monospace%22%20stroke%3D%22none%22%20transform%3D%22scale(71.759)%20matrix(1%200%200%20-1%200%200)%22%3E%E8%8B%A5%3C%2Ftext%3E%0A%3Cg%20transform%3D%22translate(932%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-41%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-31%22%20x%3D%221061%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2C%22%20x%3D%222137%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(2582%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-41%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-32%22%20x%3D%221061%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2C%22%20x%3D%223786%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2026%22%20x%3D%224232%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2C%22%20x%3D%225571%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(6016%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-41%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMATHI-6E%22%20x%3D%221061%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(7291%2C0)%22%3E%0A%3Ctext%20font-family%3D%22monospace%22%20stroke%3D%22none%22%20transform%3D%22scale(71.759)%20matrix(1%200%200%20-1%200%200)%22%3E%E4%BA%92%3C%2Ftext%3E%0A%3Cg%20transform%3D%22translate(932%2C0)%22%3E%0A%3Ctext%20font-family%3D%22monospace%22%20stroke%3D%22none%22%20transform%3D%22scale(71.759)%20matrix(1%200%200%20-1%200%200)%22%3E%E4%B8%8D%3C%2Ftext%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(1865%2C0)%22%3E%0A%3Ctext%20font-family%3D%22monospace%22%20stroke%3D%22none%22%20transform%3D%22scale(71.759)%20matrix(1%200%200%20-1%200%200)%22%3E%E7%9B%B8%3C%2Ftext%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(2798%2C0)%22%3E%0A%3Ctext%20font-family%3D%22monospace%22%20stroke%3D%22none%22%20transform%3D%22scale(71.759)%20matrix(1%200%200%20-1%200%200)%22%3E%E5%AE%B9%3C%2Ftext%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2C%22%20x%3D%223731%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(4259%2C0)%22%3E%0A%3Ctext%20font-family%3D%22monospace%22%20stroke%3D%22none%22%20transform%3D%22scale(71.759)%20matrix(1%200%200%20-1%200%200)%22%3E%E5%88%99%3C%2Ftext%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-50%22%20x%3D%2212484%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(13402%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(389%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-41%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-31%22%20x%3D%221061%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-222A%22%20x%3D%221816%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(2705%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-41%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-32%22%20x%3D%221061%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-222A%22%20x%3D%224132%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2026%22%20x%3D%225022%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-222A%22%20x%3D%226416%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(7306%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-41%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMATHI-6E%22%20x%3D%221061%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%228581%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-3D%22%20x%3D%2222651%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-50%22%20x%3D%2223707%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(24625%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(389%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-41%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-31%22%20x%3D%221061%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%221593%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2B%22%20x%3D%2226831%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-50%22%20x%3D%2227832%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(28750%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(389%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-41%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-32%22%20x%3D%221061%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%221593%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2B%22%20x%3D%2230956%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2026%22%20x%3D%2231956%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2B%22%20x%3D%2233351%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-50%22%20x%3D%2234352%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(35270%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(389%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-41%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMATHI-6E%22%20x%3D%221061%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%221664%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(5956%2C621)%22%3E%0A%3Ctext%20font-family%3D%22monospace%22%20stroke%3D%22none%22%20transform%3D%22scale(71.759)%20matrix(1%200%200%20-1%200%200)%22%3E%E5%B9%BF%3C%2Ftext%3E%0A%3Cg%20transform%3D%22translate(932%2C0)%22%3E%0A%3Ctext%20font-family%3D%22monospace%22%20stroke%3D%22none%22%20transform%3D%22scale(71.759)%20matrix(1%200%200%20-1%200%200)%22%3E%E4%B9%89%3C%2Ftext%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(1865%2C0)%22%3E%0A%3Ctext%20font-family%3D%22monospace%22%20stroke%3D%22none%22%20transform%3D%22scale(71.759)%20matrix(1%200%200%20-1%200%200)%22%3E%E7%9A%84%3C%2Ftext%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2C%22%20x%3D%222798%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-50%22%20x%3D%223077%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%20x%3D%223828%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-41%22%20x%3D%224218%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-222A%22%20x%3D%225190%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-42%22%20x%3D%226080%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%226840%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-3D%22%20x%3D%227507%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-50%22%20x%3D%228563%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%20x%3D%229315%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-41%22%20x%3D%229704%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%2210455%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2B%22%20x%3D%2211066%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-50%22%20x%3D%2212067%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%20x%3D%2212819%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-42%22%20x%3D%2213208%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%2213968%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2212%22%20x%3D%2214579%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-50%22%20x%3D%2215580%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%20x%3D%2216331%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-41%22%20x%3D%2216721%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-42%22%20x%3D%2217471%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%2218231%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-3D%22%20x%3D%2218898%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-50%22%20x%3D%2219955%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%20x%3D%2220706%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-41%22%20x%3D%2221096%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%2221846%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2B%22%20x%3D%2222458%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-50%22%20x%3D%2223458%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%20x%3D%2224210%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(24599%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-41%22%20x%3D%2235%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(139%2C281)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-AF%22%20x%3D%22-70%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(355.5131578947368%2C0)%20scale(0.07894736842105263%2C1)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-AF%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-AF%22%20x%3D%22320%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-42%22%20x%3D%2225559%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%2226318%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-3D%22%20x%3D%2226986%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-50%22%20x%3D%2228042%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%20x%3D%2228794%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-42%22%20x%3D%2229183%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%2229943%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2B%22%20x%3D%2230554%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-50%22%20x%3D%2231555%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%20x%3D%2232306%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(32696%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-42%22%20x%3D%2235%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(83%2C248)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-AF%22%20x%3D%22-70%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(353.7804709141274%2C0)%20scale(0.1038781163434903%2C1)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-AF%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-AF%22%20x%3D%22329%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-41%22%20x%3D%2233609%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%2234359%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(6084%2C-770)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-50%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%20x%3D%22751%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-41%22%20x%3D%221141%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-222A%22%20x%3D%222113%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-42%22%20x%3D%223003%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-222A%22%20x%3D%223985%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-43%22%20x%3D%224874%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%225635%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-3D%22%20x%3D%226302%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-50%22%20x%3D%227358%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%20x%3D%228110%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-41%22%20x%3D%228499%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%229250%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2B%22%20x%3D%229862%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-50%22%20x%3D%2210862%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%20x%3D%2211614%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-42%22%20x%3D%2212003%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%2212763%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2B%22%20x%3D%2213375%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-50%22%20x%3D%2214375%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%20x%3D%2215127%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-43%22%20x%3D%2215516%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%2216277%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2212%22%20x%3D%2216889%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-50%22%20x%3D%2217889%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%20x%3D%2218641%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-41%22%20x%3D%2219030%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-42%22%20x%3D%2219781%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%2220540%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2212%22%20x%3D%2221152%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-50%22%20x%3D%2222153%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%20x%3D%2222904%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-41%22%20x%3D%2223294%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-43%22%20x%3D%2224044%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%2224805%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2212%22%20x%3D%2225416%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-50%22%20x%3D%2226417%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%20x%3D%2227169%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-42%22%20x%3D%2227558%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-43%22%20x%3D%2228318%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%2229078%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2B%22%20x%3D%2229690%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-50%22%20x%3D%2230691%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%20x%3D%2231442%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-41%22%20x%3D%2231832%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-42%22%20x%3D%2232582%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-43%22%20x%3D%2233342%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%2234102%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(0%2C-2015)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-50%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(918%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(389%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ1-22C3%22%20x%3D%220%22%20y%3D%22-1%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMATHI-6E%22%20x%3D%221178%22%20y%3D%22675%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(833%2C-286)%22%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMATHI-69%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-3D%22%20x%3D%22345%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-31%22%20x%3D%221124%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(2638%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-41%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMATHI-69%22%20x%3D%221061%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%223733%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-3D%22%20x%3D%225318%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(6374%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ1-2211%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMATHI-6E%22%20x%3D%221494%22%20y%3D%22675%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(1056%2C-287)%22%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMATHI-69%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-3D%22%20x%3D%22345%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-31%22%20x%3D%221124%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-50%22%20x%3D%228846%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(9764%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(389%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-41%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMATHI-69%22%20x%3D%221061%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%221484%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2212%22%20x%3D%2211860%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(12861%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ1-2211%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(1056%2C-287)%22%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-31%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-2264%22%20x%3D%22500%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMATHI-69%22%20x%3D%221279%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-3C%22%20x%3D%221624%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMATHI-6A%22%20x%3D%222403%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-2264%22%20x%3D%222815%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMATHI-6E%22%20x%3D%223594%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-50%22%20x%3D%2217150%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(18068%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(389%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-41%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMATHI-69%22%20x%3D%221061%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(1484%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-41%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMATHI-6A%22%20x%3D%221061%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%222626%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2B%22%20x%3D%2221307%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(22307%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ1-2211%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(1056%2C-287)%22%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-31%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-2264%22%20x%3D%22500%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMATHI-69%22%20x%3D%221279%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-3C%22%20x%3D%221624%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMATHI-6A%22%20x%3D%222403%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-3C%22%20x%3D%222815%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMATHI-6B%22%20x%3D%223594%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-2264%22%20x%3D%224115%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMATHI-6E%22%20x%3D%224894%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-50%22%20x%3D%2227516%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(28434%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(389%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-41%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMATHI-69%22%20x%3D%221061%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(1484%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-41%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMATHI-6A%22%20x%3D%221061%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(2626%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-41%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMATHI-6B%22%20x%3D%221061%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%223845%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2B%22%20x%3D%2232891%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2026%22%20x%3D%2233892%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2B%22%20x%3D%2235287%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%20x%3D%2236288%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2212%22%20x%3D%2236677%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-31%22%20x%3D%2237456%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(37956%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(389%2C362)%22%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMATHI-6E%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-2B%22%20x%3D%22600%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-31%22%20x%3D%221379%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-50%22%20x%3D%2239775%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(40693%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(389%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-41%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-31%22%20x%3D%221061%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3Cg%20transform%3D%22translate(1593%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-41%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-32%22%20x%3D%221061%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2026%22%20x%3D%222964%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(4304%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-41%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMATHI-6E%22%20x%3D%221061%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%225579%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fsvg%3E#card=math&code=%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bc%7D%0A%5Ctext%20%7B%20%E8%8B%A5%20%7D%20A%7B1%7D%2C%20A%7B2%7D%2C%20%5Cldots%2C%20A%7Bn%7D%20%5Ctext%20%7B%20%E4%BA%92%E4%B8%8D%E7%9B%B8%E5%AE%B9%2C%20%E5%88%99%20%7D%20P%5Cleft%28A%7B1%7D%20%5Ccup%20A%7B2%7D%20%5Ccup%20%5Cldots%20%5Ccup%20A%7Bn%7D%5Cright%29%3DP%5Cleft%28A%7B1%7D%5Cright%29%2BP%5Cleft%28A%7B2%7D%5Cright%29%2B%5Cldots%2BP%5Cleft%28A%7Bn%7D%5Cright%29%20%5C%5C%0A%5Ctext%20%7B%20%E5%B9%BF%E4%B9%89%E7%9A%84%2C%20%7D%20P%28A%20%5Ccup%20B%29%3DP%28A%29%2BP%28B%29-P%28A%20B%29%3DP%28A%29%2BP%28%5Cbar%7BA%7D%20B%29%3DP%28B%29%2BP%28%5Cbar%7BB%7D%20A%29%20%5C%5C%0AP%28A%20%5Ccup%20B%20%5Ccup%20C%29%3DP%28A%29%2BP%28B%29%2BP%28C%29-P%28A%20B%29-P%28A%20C%29-P%28B%20C%29%2BP%28A%20B%20C%29%20%5C%5C%0AP%5Cleft%28%5Cbigcup%7Bi%3D1%7D%5E%7Bn%7D%20A%7Bi%7D%5Cright%29%3D%5Csum%7Bi%3D1%7D%5E%7Bn%7D%20P%5Cleft%28A%7Bi%7D%5Cright%29-%5Csum%7B1%20%5Cleq%20i%3Cj%20%5Cleq%20n%7D%20P%5Cleft%28A%7Bi%7D%20A%7Bj%7D%5Cright%29%2B%5Csum%7B1%20%5Cleq%20i%3Cj%3Ck%20%5Cleq%20n%7D%20P%5Cleft%28A%7Bi%7D%20A%7Bj%7D%20A%7Bk%7D%5Cright%29%2B%5Cldots%2B%28-1%29%5E%7Bn%2B1%7D%20P%5Cleft%28A%7B1%7D%20A%7B2%7D%20%5Cldots%20A_%7Bn%7D%5Cright%29%0A%5Cend%7Barray%7D%5Cright.&id=IwrP6)

减法公式概率论与数理统计 - 图18

1.3 等可能概型(古典概型)

1. 样本空间包含有限个元素。
2. 每个基本事件发生的可能性相同。
具有以上两个特点的试验称为等可能概型,也叫古典概型。

1.4 条件概率

概率论与数理统计 - 图19 是两个事件,且概率论与数理统计 - 图20,称概率论与数理统计 - 图21为在事件A 发生的条件下事件B 发生的条件概率。
乘法公式概率论与数理统计 - 图22
全概率公式概率论与数理统计 - 图23
贝叶斯公式概率论与数理统计 - 图24

1.5 独立性

概率论与数理统计 - 图25是两个事件,如果满足等式概率论与数理统计 - 图26,则称事件概率论与数理统计 - 图27相互独立,简称概率论与数理统计 - 图28独立。
概率论与数理统计 - 图29概率论与数理统计 - 图30相互独立概率论与数理统计 - 图31概率论与数理统计 - 图32

2. 第2章 随机变量及其分布

2.1 随机变量

设随机试验概率论与数理统计 - 图33的样本空间为概率论与数理统计 - 图34是定义在样本空间概率论与数理统计 - 图35上的实值单值函数,称概率论与数理统计 - 图36为随机变量。
随机变量的取值随随机试验的结果而定,在试验之前不能预知它取什么值,且它的取值有一定的概率。这些性质显示了随机变量与普通函数有着本质的差异。

2.2 离散型随机变量及其分布律

如果随机变量概率论与数理统计 - 图37全部可能的取值是有限个或可列无限个,则称概率论与数理统计 - 图38为离散型随机变量。
概率论与数理统计 - 图39
几个常见分布:

  • [x] 1. 0-1 分布概率论与数理统计 - 图40

  • [x] 2. 二项分布概率论与数理统计 - 图41概率论与数理统计 - 图42

  • [x] 3. 泊松分布概率论与数理统计 - 图43概率论与数理统计 - 图44

4. 几何分布概率论与数理统计 - 图45

  • 5. 超几何分布概率论与数理统计 - 图46

    2.3 随机变量的分布函数

    概率论与数理统计 - 图47是一个随机变量,概率论与数理统计 - 图48是任意实数,函数概率论与数理统计 - 图49称为概率论与数理统计 - 图50的分布函数。分布函数概率论与数理统计 - 图51具有以下性质:
    1. 概率论与数理统计 - 图52是一个不减函数
    2.概率论与数理统计 - 图53
    3.概率论与数理统计 - 图54概率论与数理统计 - 图55是右连续的

    2.4 连续型随机变量及其概率密度

    如果对于随机变量概率论与数理统计 - 图56的分布函数概率论与数理统计 - 图57,存在非负函数概率论与数理统计 - 图58,使得对于任意实数概率论与数理统计 - 图59,均有概率论与数理统计 - 图60则称概率论与数理统计 - 图61为连续型随机变量,其中函数概率论与数理统计 - 图62称为概率论与数理统计 - 图63的概率密度函数,简称概率密度。

概率密度概率论与数理统计 - 图64具有以下性质:
1.概率论与数理统计 - 图65
2.概率论与数理统计 - 图66
3.概率论与数理统计 - 图67
4.若概率论与数理统计 - 图68在点概率论与数理统计 - 图69处连续,则有概率论与数理统计 - 图70

几个常见分布:

  • [x] 1. 均匀分布概率论与数理统计 - 图71概率论与数理统计 - 图72概率论与数理统计 - 图73概率论与数理统计 - 图74

  • [x] 2. 指数分布概率论与数理统计 - 图75指数分布和几何分布具有“无记忆性”

  • [x] 3. 正态分布概率论与数理统计 - 图76概率论与数理统计 - 图77记为概率论与数理统计 - 图78特别地,当概率论与数理统计 - 图79时,称概率论与数理统计 - 图80服从标准正态分布。正态分布具有以下性质

  • (1)概率论与数理统计 - 图81

(2)概率论与数理统计 - 图82
(3)概率论与数理统计 - 图83
(4)概率论与数理统计 - 图84

2.5 随机变量函数的分布

求随机变量函数的分布:
1. 离散型随机变量函数的分布
列举法:逐点求出Y 的值,概率不变,相同值合并
2. 连续型随机变量函数的分布
(1) 分布函数法概率论与数理统计 - 图85
(2) 公式法
如果概率论与数理统计 - 图86处处可导且恒有概率论与数理统计 - 图87,则概率论与数理统计 - 图88也是连续型随机变量,其概率密度为概率论与数理统计 - 图89其中概率论与数理统计 - 图90概率论与数理统计 - 图91的反函数。

3. 第3章 多维随机变量及其分布

3.1 二维随机变量

设随机试验概率论与数理统计 - 图92的样本空间为概率论与数理统计 - 图93概率论与数理统计 - 图94是定义在样本空间概率论与数理统计 - 图95上的两个随机变量,由它们构成的一个向量概率论与数理统计 - 图96,叫做二维随机向量或二维随机变量。
概率论与数理统计 - 图97是一个二维随机变量,概率论与数理统计 - 图98是任意实数,函数概率论与数理统计 - 图99称为二维随机变量概率论与数理统计 - 图100的分布函数,或称为随机变量概率论与数理统计 - 图101概率论与数理统计 - 图102联合分布函数
分布函数概率论与数理统计 - 图103具有以下性质:
1. 概率论与数理统计 - 图104是变量概率论与数理统计 - 图105概率论与数理统计 - 图106的不减函数。
2. 概率论与数理统计 - 图107,且概率论与数理统计 - 图108
3. 概率论与数理统计 - 图109关于概率论与数理统计 - 图110右连续,关于概率论与数理统计 - 图111也右连续。
4.对于任意的概率论与数理统计 - 图112 , 有概率论与数理统计 - 图113

如果二维随机变量概率论与数理统计 - 图114全部可能取到的值是有限个或可列无限个,则称概率论与数理统计 - 图115为离散型二维随机变量。概率论与数理统计 - 图116概率论与数理统计 - 图117的分布律
如果对于二维随机变量概率论与数理统计 - 图118的分布函数概率论与数理统计 - 图119,存在非负函数概率论与数理统计 - 图120,使得对于任意实数概率论与数理统计 - 图121,均有概率论与数理统计 - 图122则称概率论与数理统计 - 图123为连续型二维随机变量,其中函数概率论与数理统计 - 图124称为概率论与数理统计 - 图125概率密度,或称为随机变量概率论与数理统计 - 图126概率论与数理统计 - 图127的联合概率密度。

概率密度概率论与数理统计 - 图128具有以下性质:
1.概率论与数理统计 - 图129
2.概率论与数理统计 - 图130
3.概率论与数理统计 - 图131
4.若概率论与数理统计 - 图132在点概率论与数理统计 - 图133处连续,则有概率论与数理统计 - 图134

3.2 边缘分布

  • 边缘分布函数:概率论与数理统计 - 图135
  • 边缘分布律:概率论与数理统计 - 图136
  • [x] 边缘概率密度:概率论与数理统计 - 图137

    3.3 条件分布

    条件分布率概率论与数理统计 - 图138
    条件概率密度概率论与数理统计 - 图139

    3.4 相互独立的随机变量

    概率论与数理统计 - 图140概率论与数理统计 - 图141相互独立概率论与数理统计 - 图142(连续型)概率论与数理统计 - 图143(离散型)

    3.5 二维随机变量函数的分布

    1. 离散型二维随机变量,列举法
    2. 连续型二维随机变量
    (1) 分布函数法概率论与数理统计 - 图144
    (2) 公式法

  • [x] ①概率论与数理统计 - 图145

  • 概率论与数理统计 - 图146 X,Y对称 概率论与数理统计 - 图147

概率论与数理统计 - 图148概率论与数理统计 - 图149相互独立时,有卷积公式
概率论与数理统计 - 图150
概率论与数理统计 - 图151
概率论与数理统计 - 图152

4. 第4章 随机变量的数字特征

4.1 数学期望

离散型概率论与数理统计 - 图153
连续型概率论与数理统计 - 图154

概率论与数理统计 - 图155

概率论与数理统计 - 图156
性质:

  • 1.概率论与数理统计 - 图157
  • 2.概率论与数理统计 - 图158
  • 3.概率论与数理统计 - 图159
  • [x] 4.概率论与数理统计 - 图160

    4.2 方差

  • [x] 概率论与数理统计 - 图161

性质:

  • 1概率论与数理统计 - 图162
  • 2概率论与数理统计 - 图163
  • 3概率论与数理统计 - 图164
  • 4概率论与数理统计 - 图165

常见分布的数字特征:
离散型:

  • [x] 1.0-1 分布概率论与数理统计 - 图166

  • [x] 2.二项分布概率论与数理统计 - 图167概率论与数理统计 - 图168

  • [x] 3.泊松分布概率论与数理统计 - 图169概率论与数理统计 - 图170

4.几何分布概率论与数理统计 - 图171

5.超几何分布概率论与数理统计 - 图172

连续型:

  • [x] 1.均匀分布概率论与数理统计 - 图173概率论与数理统计 - 图174

  • [x] 2.指数分布概率论与数理统计 - 图175概率论与数理统计 - 图176

  • [x] 3.正态分布概率论与数理统计 - 图177概率论与数理统计 - 图178

4.3 协方差及相关系数

协方差概率论与数理统计 - 图179
性质:
1概率论与数理统计 - 图180
2概率论与数理统计 - 图181

  • 相关系数概率论与数理统计 - 图182

性质:
1概率论与数理统计 - 图183
2概率论与数理统计 - 图184

独立一定不相关,不相关不一定独立。
对于二维正态分布,独立与不相关等价。

4.4 矩、协方差矩阵

概率论与数理统计 - 图185
概率论与数理统计 - 图186
概率论与数理统计 - 图187
概率论与数理统计 - 图188
概率论与数理统计 - 图189

5. 第5章 大数定律和中心极限定理

5.1 大数定律

1. 切比雪夫(Chebyshev)大数定律

设随机变量概率论与数理统计 - 图190相互独立,期望和方差都存在,且它们的方差有公共上界,则对于任意实数概率论与数理统计 - 图191,有

概率论与数理统计 - 图192

  • 切比雪夫不等式概率论与数理统计 - 图193

    2. 伯努力大数定律

    设随机变量概率论与数理统计 - 图194相互独立且都服从参数为概率论与数理统计 - 图195概率论与数理统计 - 图196分布,则对于任意实数概率论与数理统计 - 图197,有

概率论与数理统计 - 图198

3. 辛钦大数定律

设随机变量概率论与数理统计 - 图199相互独立,服从统一分布,且具有共同的数学期望,则对于任意实数概率论与数理统计 - 图200,有

概率论与数理统计 - 图201

5.2 中心极限定理

1. 列维-林德伯格定理(独立同分布的中心极限定理)设随机变量概率论与数理统计 - 图202相互独立,服从同一分布,且具有共同的期望和方差,则

  • 概率论与数理统计 - 图203,即概率论与数理统计 - 图204

2. 李雅普诺夫(Liapunov)定理设随机变量概率论与数理统计 - 图205相互独立,他们具有数学期望和方差:
概率论与数理统计 - 图206
概率论与数理统计 - 图207,若存在正数概率论与数理统计 - 图208,使得当概率论与数理统计 - 图209时,概率论与数理统计 - 图210,则概率论与数理统计 - 图211

3. 棣莫弗-拉普拉斯(De Moivre-Laplace)定理(二项分布以正态分布为极限)
概率论与数理统计 - 图212

6. 第6章 数理统计的基本概念

6.1 随机样本

随机试验全部可能的观察值称为总体。
每一个可能观察值称为个体。
一个总体对应于一个随机变量概率论与数理统计 - 图213,一般不区分总体与相应随机变量,笼统称为总体概率论与数理统计 - 图214
被抽取的部分个体叫做总体的一个样本。
来自总体概率论与数理统计 - 图215概率论与数理统计 - 图216个相互独立且与总体同分布的随机变量称为简单随机变量。

6.2 抽样分布

概率论与数理统计 - 图217是来自总体概率论与数理统计 - 图218的一个样本,概率论与数理统计 - 图219是一个连续函数,若概率论与数理统计 - 图220中不含未知参数,则称概率论与数理统计 - 图221是一个统计量。
常用的统计量:
样本均值概率论与数理统计 - 图222
样本方差概率论与数理统计 - 图223
样本概率论与数理统计 - 图224阶原点矩概率论与数理统计 - 图225
样本概率论与数理统计 - 图226阶中心矩概率论与数理统计 - 图227
经验分布函数概率论与数理统计 - 图228概率论与数理统计 - 图229表示值小于概率论与数理统计 - 图230的随机变量的个数。
概率论与数理统计 - 图231

来自正态总体的几个常用抽样分布:
1.概率论与数理统计 - 图232分布
概率论与数理统计 - 图233是来自总体概率论与数理统计 - 图234的样本,则称统计量概率论与数理统计 - 图235服从自由度为概率论与数理统计 - 图236概率论与数理统计 - 图237分布,记为概率论与数理统计 - 图238
概率论与数理统计 - 图239,由定义概率论与数理统计 - 图240,即概率论与数理统计 - 图241,再由分布的可加性知概率论与数理统计 - 图242概率论与数理统计 - 图243

2. 概率论与数理统计 - 图244分布
概率论与数理统计 - 图245,且概率论与数理统计 - 图246相互独立,则称随机变量概率论与数理统计 - 图247服从自由度为概率论与数理统计 - 图248概率论与数理统计 - 图249分布,记为概率论与数理统计 - 图250
概率论与数理统计 - 图251足够大时,概率论与数理统计 - 图252分布近似于概率论与数理统计 - 图253分布。概率论与数理统计 - 图254分布的上概率论与数理统计 - 图255分位点记为概率论与数理统计 - 图256,由其概率密度的对称性知概率论与数理统计 - 图257

3. 概率论与数理统计 - 图258分布
概率论与数理统计 - 图259,且概率论与数理统计 - 图260相互独立,则称随机变量概率论与数理统计 - 图261服从自由度为的概率论与数理统计 - 图262分布,记为概率论与数理统计 - 图263
概率论与数理统计 - 图264分布的性质:
(1).若概率论与数理统计 - 图265,则概率论与数理统计 - 图266
(2).若概率论与数理统计 - 图267,则概率论与数理统计 - 图268
概率论与数理统计 - 图269分布的上α 分位点记为概率论与数理统计 - 图270概率论与数理统计 - 图271

正态总体样本均值与样本方差的抽样分布:

  • 首选,不论概率论与数理统计 - 图272服从什么分布,总有概率论与数理统计 - 图273
  • 1.概率论与数理统计 - 图274
  • 2.概率论与数理统计 - 图275,且概率论与数理统计 - 图276概率论与数理统计 - 图277相互独立
  • 3.概率论与数理统计 - 图278

4.概率论与数理统计 - 图279,若概率论与数理统计 - 图280,则概率论与数理统计 - 图281概率论与数理统计 - 图282

第7章 参数估计

7.1 点估计

设总体概率论与数理统计 - 图283的分布函数的形式为已知,但它的一个或多个参数未知,借助于总体概率论与数理统计 - 图284的一个样本来估计未知参数的值称为参数的点估计。

1. 矩估计法
用样本原点矩概率论与数理统计 - 图285来估计总体的原点矩概率论与数理统计 - 图286,用样本的中心矩概率论与数理统计 - 图287来估计总体的中心矩概率论与数理统计 - 图288

2. 最大似然估计法
(1) 写出似然函数概率论与数理统计 - 图289
(2) 求出使概率论与数理统计 - 图290达到最大值的概率论与数理统计 - 图291.
概率论与数理统计 - 图292概率论与数理统计 - 图293个乘积的形式,而且概率论与数理统计 - 图294概率论与数理统计 - 图295在同一概率论与数理统计 - 图296处取极值,因此的概率论与数理统计 - 图297最大似然估计量概率论与数理统计 - 图298(对数似然方程)求得。
(3) 用概率论与数理统计 - 图299作为概率论与数理统计 - 图300的估计量。

7.2 估计量的评价标准

1. 无偏性概率论与数理统计 - 图301
2. 有效性概率论与数理统计 - 图302
3. 相合性概率论与数理统计 - 图303

7.3 区间估计

设总体概率论与数理统计 - 图304的分布函数概率论与数理统计 - 图305含有一个未知参数概率论与数理统计 - 图306,对于给定值概率论与数理统计 - 图307,若由来自概率论与数理统计 - 图308的样本概率论与数理统计 - 图309确定的两个统计量
概率论与数理统计 - 图310概率论与数理统计 - 图311,,对于任意概率论与数理统计 - 图312满足概率论与数理统计 - 图313,则称随机区间概率论与数理统计 - 图314是的置信水平为的概率论与数理统计 - 图315置信区间。
置信水平为的概率论与数理统计 - 图316置信区间不是唯一的。区间越小表示估计的精度越高。

7.4 正态总体期望与方差的区间估计

正态总体期望与方差的区间估计

第8章 假设检验

拒绝域:当检验统计量落入其中时,则否定原假设。

小概率事件原理:小概率事件在一次试验中实际上不会发生,若在一次试验中发生了,就认为不合理,小概率的值常根据实际问题的要求,规定一个可以接受的充分小的数概率论与数理统计 - 图318,当一个事件的概率不大于概率论与数理统计 - 图319时,就认为它是小概率事件。概率论与数理统计 - 图320称为显著性水平。

统计推断有两类错误,弃真和存伪,只对犯第一类错误的概率加以控制,而不考虑第二类错误的检验称为显著性检验。概率论与数理统计 - 图321就是允许犯第一类错误的概率的最大允许值。

假设检验的基本步骤;
1. 根据实际问题的要求,提出原假设概率论与数理统计 - 图322和备择假设概率论与数理统计 - 图323
2. 给定显著性水平概率论与数理统计 - 图324和样本容量概率论与数理统计 - 图325
3. 确定检验统计量以及拒绝域的形式;
4. 按概率论与数理统计 - 图326求出拒绝域;
5. 取样,根据样本观察值做出决策,是接受概率论与数理统计 - 图327还是拒绝概率论与数理统计 - 图328

8.2 正态总体样本均值与样本方差的假设检验

image.png