当我们输入一些字母或单词时,计算机会将它们翻译成数字,因为计算机只能理解数字。 计算机可以理解位置数字系统,其中只有少数称为数字的符号,这些符号根据它们在数字中占据的位置代表不同的值。
一个数字中每个数字的值可以通过使用来确定 −

  • 数字
  • 数字中数字的位置
  • 数字系统的基数(其中基数定义为数字系统中可用的总位数)

十进制数系统

我们在日常生活中使用的数字系统是十进制数字系统。 十进制以 10 为底,因为它使用从 0 到 9 的 10 位数字。在十进制中,小数点左侧的连续位置表示单位、十、百、千等。
每个位置代表一个特定的底座 (10) 的功率。 例如,十进制数 1234 由个位中的数字 4、十位中的 3、百位中的 2 和千位中的 1 组成。 它的值可以写成

  1. (1 x 1000)+ (2 x 100)+ (3 x 10)+ (4 x l)
  2. (1 x 103)+ (2 x 102)+ (3 x 101)+ (4 x l00)
  3. 1000 + 200 + 30 + 4
  4. 1234

作为计算机程序员或 IT 专业人员,您应该了解以下计算机中经常使用的数字系统。

S.No. 数字系统和描述
1 二进制数系统
以 2 为基数。使用的数字:0、1
2 八进制数
以 8 为基数。使用的数字:0 到 7
3 十六进制数系统
以 16 为基数。使用的数字:0 到 9,使用的字母:A-F

二进制数系统

二进制数系统的特点如下 −

  • 使用两个数字,0 和 1
  • 也称为以 2 为基数的数字系统
  • 二进制数中的每个位置代表底数 (2) 的 0 次幂。 示例 20
  • 二进制数的最后一个位置表示底数 (2) 的 x 次幂。 示例 2x 其中 x 表示最后一个位置 - 1。

    示例

    二进制数:101012
    计算十进制等值 −
步骤 二进制数 十进制数
步骤 1 101012 ((1 x 24) + (0 x 23) + (1 x 22) + (0 x 21) + (1 x 20))10
步骤 2 101012 (16 + 0 + 4 + 0 + 1)10
步骤 3 101012 2110

注意 − 101012 通常写成 10101。


八进制数

八进制数系统的特点如下 −

  • 使用八位数字,0,1,2,3,4,5,6,7
  • 也称为以 8 为基数的数字系统
  • 八进制数中的每个位置都代表底数 (8) 的 0 次幂。 示例 80
  • 八进制数中的最后一位代表底数 (8) 的 x 次幂。 示例 8x 其中 x 表示最后一个位置 - 1

    示例

    八进制数:125708
    计算十进制等值t −
步骤 八进制数 十进制数
步骤 1 125708 ((1 x 84) + (2 x 83) + (5 x 82) + (7 x 81) + (0 x 80))10
步骤 2 125708 (4096 + 1024 + 320 + 56 + 0)10
步骤 3 125708 549610

注意 − 125708 通常写成 12570。


十六进制数

16进制数的特点如下 −

  • 使用 10 位数字和 6 个字母,0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F李>
  • 字母表示从 10 开始的数字。A = 10。B = 11,C = 12,D = 13,E = 14,F = 15
  • 也称为 16 进制数
  • 十六进制数中的每个位置都代表底数 (16) 的 0 次幂。 例如,160
  • 十六进制数中的最后一个位置表示底数 (16) 的 x 次幂。 示例 16x 其中 x 表示最后一个位置 - 1

    示例

    十六进制数:19FDE16
    计算十进制等值 −
步骤 二进制数 十进制数
步骤 1 19FDE16 ((1 x 164) + (9 x 163) + (F x 162) + (D x 161) + (E x 160))10
步骤 2 19FDE16 ((1 x 164) + (9 x 163) + (15 x 162) + (13 x 161) + (14 x 160))10
步骤 3 19FDE16 (65536+ 36864 + 3840 + 208 + 14)10
步骤 4 19FDE16 10646210

注意 − 19FDE16 通常写成 19FDE。