一、段式存储管理

1、分段

进程的地址空间:按照程序自身的逻辑关系划分为若干个段,每个段都有一个段名(在低级语言中,程序员使用段名来编程),每段从0开始编址。
内存分配规则:以段为单位进行分配,每个段在内存中占连续空间,但各段之间可以不相邻
image.png
分段系统的逻辑地址结构由段号(段名)段内地址(段内偏移量)所组成。

image.png

2、段表

image.png
每一个程序设置一个段表,放在内存,属于进程的现场信息

3、地址变换

image.png image.png

4、段的保护

越界中断处理
进程在执行过程中,有时需要扩大分段,如数据段。由于要访问的地址超出原有的段长,所以发越界中断。操作系统处理中断时 ,首先判断该段的“扩充位”,如可扩充,则增加段的长度;否则按出错处理
缺段中断处理
检查内存中是否有足够的空闲空间
①若有,则装入该段,修改有关数据结构,中断返回
②若没有,检查内存中空闲区的总和是否满足要求,是则应采用紧缩技术,转 ① ;否则,淘汰一(些)段,转①

5、段的动态连接

为何要进行段的动态链接?
大型程序由若干程序段,若干数据段组成
进程的某些程序段在进程运行期间可能根本不用
互斥执行的程序段没有必要同时驻留内存
有些程序段执行一次后不再用到
静态链接花费时间,浪费空间

在一个程序运行开始时,只将主程序段装配好并调入主存。其它各段的装配是在主程序段运行过程中逐步进行的。每当需要调用一个新段时,再将这个新段装配好,并与主程序段连接。
页式存储管理:难以完成动态链接,其逻辑地址是一维的

6、信息的保护与共享

这里主要与页式存储管理进行一下对比。
分段比分页更容易实现信息的共享和保护。
image.png

纯代码举例:比如,有一个代码段只是简单的输出“Hello World!”。
image.png

7、页式系统与段式系统的对比

image.png
补充:
段长是可变的,页的大小是固定的。
分段存储:段内地址W字段溢出将产生越界中断。
分页存储:段内地址W字段溢出会自动加入到页号中。

8、总结

image.png

二、段页式存储管理

1、分页、分段的有缺点分析

image.png

2、基本思想

用户程序划分:按段式划分(对用户来讲,按段的逻辑关系进行划分;对系统讲,按页划分每一段)
逻辑地址:
image.png
内存划分:按页式存储管理方案
内存分配:以页为单位进行分配
image.png

3、逻辑地址结构

image.png

4、段表页表

image.png

5、地址转换

image.png

6、评价

优点:
保留了分段和请求分页存储管理的全部优点
提供了虚存空间,能更有效利用主存

缺点:
增加了硬件成本
系统复杂度较大

7、总结

image.png