Netty 简介

Netty是一个java开源框架。Netty提供异步的、事件驱动的网络应用程序框架和工具,用以快速开发高性能、高可靠性的网络服务器和客户端程序。
也就是说,Netty 是一个基于NIO的客户、服务器端编程框架,使用Netty 可以确保你快速和简单的开发出一个网络应用,例如实现了某种协议的客户,服务端应用。Netty相当简化和流线化了网络应用的编程开发过程,例如,TCP和UDP的socket服务开发。
“快速”和“简单”并不意味着会让你的最终应用产生维护性或性能上的问题。Netty 是一个吸收了多种协议的实现经验,这些协议包括FTP,SMTP,HTTP,各种二进制,文本协议,并经过相当精心设计的项目,最终,Netty 成功的找到了一种方式,在保证易于开发的同时还保证了其应用的性能,稳定性和伸缩性。
体系结构图
image.png
在线Javadoc:http://tool.oschina.net/apidocs/apidoc?api=netty

第一章:IO模型

Java BIO :同步并阻塞(传统阻塞型),服务器实现模式为一个连接一个线程,即客户端有连接请求时服务器端就需要启动一个线程进行处理,如果这个连接不做任何事情会造成不必要的线程开销
Java NIO :同步非阻塞,服务器实现模式为一个线程处理多个请求(连接),即客户端发送的连接请求都会注册到多路复用器上,多路复用器轮询到连接有IO请求就进行处理

Java AIO(NIO.2):异步非阻塞,AIO引入异步通道的概念,采用了Proactor 模式,简化了程序编写,有效的请求才启动线程,它的特点是先由操作系统完成后才通知服务端程序启动线程去处理,一般适用于连接数较多且连接时间较长的应用

BIO适用于连接数目小且固定的
NIO适用于连接数目多且连接短的
AIO适用于连接数目多且连接长的。

BIO以流的方式处理数据,而 NIO以块的方式处理数据,块I/O 的效率比流IO高很多
BIO是阻塞的,NIO则是非阻塞的
BIO基于字节流和字符流进行操作,而NIO 基于Channel(通道)和 Buffer(缓冲区)进行操作,数据总是从通道读取到缓冲区中,或者从缓冲区写入到通道中。Selector(选择器)用于监听多个通道的事件(比如:连接请求,数据到达等),因此使用单个线程就可以监听多个客户端通道

BIO

2. Netty - 图2

特点

  • 每个请求都需要独立的线程完成数据read,业务处理,数据write的完整操作

问题

  • 当并发数较大时,需要创建大量线程来处理连接,系统资源占用较大
  • 连接建立后,如果当前线程暂时没有数据可读,则线程就阻塞在read操作上,造成线程资源浪费

    NIO

    NIO有三大核心部分:Channel(通道),Buffer(缓冲区), Selector(选择器)
    NIO是面向缓冲区﹐或者面向块编程的。数据读取到一个它稍后处理的缓冲区,需要时可在缓冲区中前后移动,这就增加了处理过程中的灵活性,使用它可以提供非阻塞式的高伸缩性网络
    Java NIO的非阻塞模式,使一个线程从某通道发送请求或者读取数据,但是它仅能得到目前可用的数据,如果目前没有数据可用时,就什么都不会获取,而不是保持线程阻塞,所以直至数据变的可以读取之前,该线程可以继续做其他的事情。非阻塞写也是如此,一个线程请求写入一些数据到某通道,但不需要等待它完全写入,这个线程同时可以去做别的事情。
    通俗理解:NIO是可以做到用一个线程来处理多个操作的。假设有10000个请求过来,根据实际情况,可以分配50或者100个线程来处理。不像之前的阻塞IO那样,非得分配10000个。
    HTTP2.0使用了多路复用的技术,做到同一个连接并发处理多个请求,而且并发请求的数量比HTTP1.1大了好几个数量级

1)每个channel都会对应一个Buffer
2)Selector对应一个线程,一个线程对应多个channel(连接)
3)该图反应了有三个channel 注册到该selector /l程序
4)程序切换到哪个channel是有事件决定的, Event 就是一个重要的概念
5) Selector会根据不同的事件,在各个通道上切换
6) Buffer就是一个内存块﹐底层是有一个数组
7)数据的读取写入是通过Buffer,这个和 BIO , BIO中要么是输入流,或者是输出流,不能双向,但是 NIO 的 Buffer是可以读也可以写,需要flip方法切换channel是双向的,可以返回底层操作系统的情况,比如Linux ,底层的操作系统。通道就是双向的.

Buffer缓冲区

传统的I/O是面向字节流或字符流的,以流式的方式顺序地从一个Stream 中读取一个或多个字节, 因此也就不能随意改变读取指针的位置。
在NIO中, 抛弃了传统的 I/O流, 而是引入了Channel和Buffer的概念. 在NIO中, 只能从Channel中读取数据到Buffer中或将数据 Buffer 中写入到 Channel。
基于buffer操作不像传统IO的顺序操作, NIO 中可以随意地读取任意位置的数据

Channel通道

与Socket类和ServerSocket类相对应,NIO也提供了SocketChannel和ServerSocketChannel两种套接字通道实现。

Select选择器

Selector能够检测多个注册的通道上是否有事件发生(注意:多个Channel 以事件的方式可以注册到同一个Selector),如果有事件发生,便获取事件然后针对每个事件进行相应的处理。这样就可以只用一个单线程去管理多个通道,也就是管理多个连接和请求。

NIO与零拷贝

零拷贝是网络编程的关键,在Java中,常用的零拷贝有mmap(内存映射)和sendFile。
我们说零拷贝,是从操作系统的角度来说的。因为内核缓冲区之间,没有数据是重复的(只有 kernel buffer有一份数据)。零拷贝不仅仅带来更少的数据复制,还能带来其他的性能优势,例如更少的上下文切换,更少的CPU缓存伪共享以及无CPU校验和计算。
(1)mmap优化
mmap通过内存映射,将文件映射到内核缓冲区,同时,用户空间可以共享内核空间的数据。这样,在进行网络传输时,就可以减少内核空间到用户控件的拷贝次数。
(2)sendFile优化
Linux 2.1版本提供了sendFile函数,其基本原理如下:数据根本不经过用户态,直接从内核缓冲区进入到Socket Buffer,同时,由于和用户态完全无关,就减少了一次上下文切换
Linux在2.4 版本中,做了一些修改,避免了从内核缓冲区拷贝到Socket buffer 的操作,直接拷贝到协议栈,从而再一次减少了数据拷贝。
(3)区别
mmap适合小数据量读写,sendFile适合大文件传输。
mmap需要4次上下文切换,3次数据拷贝; sendFile需要3次上下文切换,最少2次数据拷贝。
SendFile可以利用DMA 方式,减少CPU拷贝,mmap则不能(必须从内核拷贝到Socket缓冲区)。

AIO

JDK7引入了Asynchronous l/O,即 AIO。在进行IO 编程中,常用到两种模式:Reactor和 Proactor。 Java 的NIO 就是 Reactor,当有事件触发时,服务器端得到通知,进行相应的处理。
AIO 即 NIO2.0,叫做异步不阻塞的IO。AIO引入异步通道的概念,采用了Proactor 模式,简化了程序编写,有效的请求才启动线程,它的特点是先由操作系统完成后才通知服务端程序启动线程去处理,一般适用于连接数较多且连接时间较长的应用

netty提供了零拷贝的buffer,在传输数据时,最终处理的数据会需要对单个传输的报文,进行组合和拆分,Nio原生的ByteBuffer无法做到,netty通过提供的Composite(组合)和Slice(拆分)两种buffer来实现零拷贝;
2. Netty - 图3

补:Linux下的五种IO模型

此部分是基础知识,也是扩展,不想看的可以直接跳过,其实本身对Netty理解没有多少影响。

1:阻塞IO模型

2:非阻塞IO模型

3:IO复用模型

主要是select和epoll;对一个IO端口,两次调用,两次返回,比阻塞IO并没有什么优越性;关键是能实现同时对多个IO端口进行监听;
I/O复用模型会用到select、poll、epoll函数,这几个函数也会使进程阻塞,但是和阻塞I/O所不同的的,这两个函数可以同时阻塞多个I/O操作。而且可以同时对多个读操作,多个写操作的I/O函数进行检测,直到有数据可读或可写时,才真正调用I/O操作函数。
select、poll、epoll简介
epoll跟select都能提供多路I/O复用的解决方案。在现在的Linux内核里有都能够支持,其中epoll是Linux所特有,而select则应该是POSIX所规定,一般操作系统均有实现
select:
select本质上是通过设置或者检查存放fd标志位的数据结构来进行下一步处理。这样所带来的缺点是:
1、 单个进程可监视的fd数量被限制,即能监听端口的大小有限。
一般来说这个数目和系统内存关系很大,具体数目可以cat /proc/sys/fs/file-max察看。32位机默认是1024个。64位机默认是2048.
2、 对socket进行扫描时是线性扫描,即采用轮询的方法,效率较低:
当套接字比较多的时候,每次select()都要通过遍历FD_SETSIZE个Socket来完成调度,不管哪个Socket是活跃的,都遍历一遍。这会浪费很多CPU时间。如果能给套接字注册某个回调函数,当他们活跃时,自动完成相关操作,那就避免了轮询,这正是epoll与kqueue做的。
3、需要维护一个用来存放大量fd的数据结构,这样会使得用户空间和内核空间在传递该结构时复制开销大
poll:
poll本质上和select没有区别,它将用户传入的数组拷贝到内核空间,然后查询每个fd对应的设备状态,如果设备就绪则在设备等待队列中加入一项并继续遍历,如果遍历完所有fd后没有发现就绪设备,则挂起当前进程,直到设备就绪或者主动超时,被唤醒后它又要再次遍历fd。这个过程经历了多次无谓的遍历。
它没有最大连接数的限制,原因是它是基于链表来存储的,但是同样有一个缺点:
1、大量的fd的数组被整体复制于用户态和内核地址空间之间,而不管这样的复制是不是有意义。 2、poll还有一个特点是“水平触发”,如果报告了fd后,没有被处理,那么下次poll时会再次报告该fd。
epoll:
epoll支持水平触发和边缘触发,最大的特点在于边缘触发,它只告诉进程哪些fd刚刚变为就需态,并且只会通知一次。还有一个特点是,epoll使用“事件”的就绪通知方式,通过epoll_ctl注册fd,一旦该fd就绪,内核就会采用类似callback的回调机制来激活该fd,epoll_wait便可以收到通知
epoll的优点:

1、没有最大并发连接的限制,能打开的FD的上限远大于1024(1G的内存上能监听约10万个端口); 2、效率提升,不是轮询的方式,不会随着FD数目的增加效率下降。只有活跃可用的FD才会调用callback函数; 即Epoll最大的优点就在于它只管你“活跃”的连接,而跟连接总数无关,因此在实际的网络环境中,Epoll的效率就会远远高于select和poll。
3、 内存拷贝,利用mmap()文件映射内存加速与内核空间的消息传递;即epoll使用mmap减少复制开销。
select、poll、epoll 区别总结:

1、支持一个进程所能打开的最大连接数

select 单个进程所能打开的最大连接数有FD_SETSIZE宏定义,其大小是32个整数的大小(在32位的机器上,大小就是3232,同理64位机器上FD_SETSIZE为3264),当然我们可以对进行修改,然后重新编译内核,但是性能可能会受到影响,这需要进一步的测试。
poll poll本质上和select没有区别,但是它没有最大连接数的限制,原因是它是基于链表来存储的
epoll 虽然连接数有上限,但是很大,1G内存的机器上可以打开10万左右的连接,2G内存的机器可以打开20万左右的连接

2、FD剧增后带来的IO效率问题

select 因为每次调用时都会对连接进行线性遍历,所以随着FD的增加会造成遍历速度慢的“线性下降性能问题”。
poll 同上
epoll 因为epoll内核中实现是根据每个fd上的callback函数来实现的,只有活跃的socket才会主动调用callback,所以在活跃socket较少的情况下,使用epoll没有前面两者的线性下降的性能问题,但是所有socket都很活跃的情况下,可能会有性能问题。

3、 消息传递方式

select 内核需要将消息传递到用户空间,都需要内核拷贝动作
poll 同上
epoll epoll通过内核和用户空间共享一块内存来实现的。

总结:
综上,在选择select,poll,epoll时要根据具体的使用场合以及这三种方式的自身特点。
1、表面上看epoll的性能最好,但是在连接数少并且连接都十分活跃的情况下,select和poll的性能可能比epoll好,毕竟epoll的通知机制需要很多函数回调。
2、select低效是因为每次它都需要轮询。但低效也是相对的,视情况而定,也可通过良好的设计改善

4:信号驱动IO

两次调用,两次返回;
首先我们允许套接口进行信号驱动I/O,并安装一个信号处理函数,进程继续运行并不阻塞。当数据准备好时,进程会收到一个SIGIO信号,可以在信号处理函数中调用I/O操作函数处理数据。

5:异步IO模型

数据拷贝的时候进程无需阻塞。
当一个异步过程调用发出后,调用者不能立刻得到结果。实际处理这个调用的部件在完成后,通过状态、通知和回调来通知调用者的输入输出操作

第四章:Netty概述

原生NIO的问题

  • NIO的类库和API繁杂,使用麻烦,你需要熟练掌握Selector、ServerSocketChannel、SocketChannel、ByteBuffer等
  • 需要具备其它的额外技能做铺垫,例如熟悉Java多线程编程,因为NIO编程涉及到Reactor模式,你必须对多线程和网路编程非常熟悉,才能编写出高质量的NIO程序
  • 可靠性能力补齐,开发工作量和难度都非常大。例如客户端面临断连重连、网络闪断、半包读写、失败缓存、网络拥塞和异常码流的处理等等,NIO编程的特点是功能开发相对容易,但是可靠性能力补齐工作量和难度都非常大
  • JDK NIO的BUG,例如臭名昭著的epoll bug,它会导致Selector空轮询,最终导致CPU 100%。官方声称在JDK1.6版本的update18修复了该问题,但是直到JDK1.7版本该问题仍旧存在,只不过该bug发生概率降低了一些而已,它并没有被根本解决

Netty

  • 设计优雅:适用于各种传输类型的统一API阻塞和非阻塞Socket;基于灵活且可扩展的事件模型,可以清晰地分离关注点;高度可定制的线程模型–单线程,一个或多个线程池.
  • 使用方便:详细记录的Javadoc,用户指南和示例;没有其他依赖项,JDK 5(Netty 3.x)或6 (Netty 4.x)就足够了。
  • 高性能、吞吐量更高:延迟更低;减少资源消耗;最小化不必要的内存复制。
  • 安全:完整的SSL/TLS和 StartTLS支持。

Netty5出现重大bug,稳定版为Netty4

发送报文的逻辑采用异步处理:各个业务点操作时,写相应的请求xml到请求表,后续由tasks轮询请求表,查询各个业务表组织报文,然后发送至队列表,再由另外的tasks将队列表的数据发送至相应的队列。

第五章:高性能分析

高性能表现:

  • IO 线程模型:同步非阻塞,用最少的资源做更多的事。
  • 内存零拷贝:尽量减少不必要的内存拷贝,实现了更高效率的传输。
  • 内存池设计:申请的内存可以重用,主要指直接内存。内部实现是用一颗二叉查找树管理内存分配情况。
  • 串形化处理读写:避免使用锁带来的性能开销。
  • 高性能序列化协议:支持 protobuf 等高性能序列化协议。

Netty作为异步事件驱动的网络,高性能之处主要来自于其I/O模型和线程处理模型,前者决定如何收发数据,后者决定如何处理数据。

1:线程模型

不同的线程模式,对程序的性能有很大影响,为了搞清Netty 线程模式,我们来系统的讲解下各个线程模式,最后看看Netty线程模型有什么优越性.
目前存在的线程模型有:

  • 传统阻塞 IO服务模型
  • Reactor模式:根据Reactor 的数量和处理资源池线程的数量不同,有3种典型的实现
    • 单Reactor单线程;
    • 单Reactor多线程;
    • 主从 Reactor 多线程

Netty 线程模式(Netty主要基于主从Reactor 多线程模型做了一定的改进,其中主从 Reactor多线程模型有多个Reactor

传统阻塞IO服务模型

采用阻塞IO模型获取输入的数据
每个连接都需要独立的线程完成数据的输入和业务处理
问题:
当并发数很大,就会创建大量的线程,占用很大系统资源连接创建后,如果当前线程暂时没有数据可读,该线程会阻塞在read操作,造成线程资源浪费。

Reactor模型

Reactor是反应堆的意思,Reactor模型,是指通过一个或多个输入同时传递给服务处理器的服务请求的事件驱动处理模式。 服务端程序处理传入多路请求,并将它们同步分派给请求对应的处理线程,Reactor模式也叫Dispatcher模式,即I/O多了复用统一监听事件,收到事件后分发(Dispatch给某进程),是编写高性能网络服务器的必备技术之一。
Reactor模型中有2个关键组成:

  • Reactor Reactor在一个单独的线程中运行,负责监听和分发事件,分发给适当的处理程序来对IO事件做出反应。 它就像公司的电话接线员,它接听来自客户的电话并将线路转移到适当的联系人
  • Handlers 处理程序执行I/O事件要完成的实际事件,类似于客户想要与之交谈的公司中的实际官员。Reactor通过调度适当的处理程序来响应I/O事件,处理程序执行非阻塞操作

IO复用结合线程池,就是Reactor模式基本设计思想
基于IO 复用模型:多个连接共用一个阻塞对象,应用程序只需要在一个阻塞对象等待,无需阻塞等待所有连接。当某个连接有新的数据可以处理时,操作系统通知应用程序,线程从阻塞状态返回,开始进行业务处理Reactor 对应的叫法:1.反应器模式2.分发者模式(Dispatcher)3.通知者模式(notifier)

单Reactor单线程

  • Select是前面IO 复用模型介绍的标准网络编程API,可以实现应用程序通过一个阻塞对象监听多路连接请求
  • Reactor对象通过Select 监控客户端请求事件,收到事件后通过Dispatch进行分发
  • 如果是建立连接请求事件,则由Acceptor通过Accept处理连接请求,然后创建一个Handler对象处理连接完成后的后续业务处理
  • 如果不是建立连接事件,则 Reactor会分发调用连接对应的 Handler 来响应
  • Handler会完成Read→业务处理→Send 的完整业务流程

单Reactor多线程

1)Reactor对象通过select监控客户端请求事件,收到事件后,通过dispatch进行分发
2)如果建立连接请求,则右Acceptor通过accept处理连接请求,然后创建一个Handler对象处理完成连接后的各种事件
3)如果不是连接请求,则由reactor分发调用连接对应的 handler来处理
4) handler 只负责响应事件,不做具体的业务处理,通过read 读取数据后,会分发给后面的worker线程池的某个线程处理业务
5) worker线程池会分配独立线程完成真正的业务,并将结果返回给handler
6)handler 收到响应后,通过send 将结果返回给client

主从REactor多线程

1) Reactor主线程MainReactor对象通过select 监听连接事件,收到事件后,通过Acceptor 处理连接事件
2)当Acceptor处理连接事件后,MainReactor 将连接分配给SubReactor
3) subreactor 将连接加入到连接队列进行监听,并创建handler进行各种事件处理
4)当有新事件发生时,subreactor就会调用对应的 handler 处理
5) handler通过read 读取数据,分发给后面的worker线程处理
6)worker 线程池分配独立的worker线程进行业务处理,并返回结果
7) handler 收到响应的结果后,再通过send将结果返回给client
8) Reactor主线程可以对应多个Reactor子线程,即 MainRecator可以关联多个SubReactor
优点:
响应快,不必为单个同步时间所阻塞,虽然Reactor本身依然是同步的
可以最大程度的避免复杂的多线程及同步问题,并且避免了多线程/进程的切换开销
扩展性好,可以方便的通过增加 Reactor实例个数来充分利用CPU资源
复用性好,Reactor模型本身与具体事件处理逻辑无关,具有很高的复用性

Netty模型

Netty主要基于主从Reactors多线程模型多的一定的改进。

1)BossGroup 线程维护Selector ,只关注Accecpt
2)当接收到Accept事件,获取到对应的SocketChannel,封装成NIOScoketChannel并注册到Worker线程(事件循环),并进行维护
3) 当Worker线程监听到selector 中通道发生自己感兴趣的事件后,就进行处理(就由 handler),注意handler已经加入到通道
详细原理:

1) Netty 抽象出两组线程池 BossGroup专门负责接收客户端的连接, WorkerGroup专门负责网络的读写
2) BossGroup和 WorkerGroup类型都是 NioEventLoopGroup
3) NioEventLoopGroup相当于一个事件循环组,这个组中含有多个事件循环,每一个事件循环是 NioEventLoop
4) NioEventLoop表示一个不断循环的执行处理任务的线程,每个NioEventLoop 都有一个selector ,用于监听绑定在其上的socket的网络通讯
5)NioEventLoopGroup可以有多个线程,即可以含有多个NioEventLoop
6)每个 Boss NioEventLoop 循环执行的步骤有3步

  • 轮询accept事件
  • 处理accept事件 ,与client建立连接﹐生成NioScocketChannel,并将其注册到某个worker NIOEventLoop 上的selector
  • 处理任务队列的任务,即runAllTasks

7)每个Worker NIOEventLoop循环执行的步骤轮询read, write事件处理i/o事件,即 read , write事件,在对应 NioScocketChannel处理处理任务队列的任务,即runAllTasks
8)每个Worker NIOEventLoop处理业务时,会使用pipeline(管道), pipeline中包含了channel,即通过pipeline以获取到对应通道,管道中维护了很多的处理器

虽然Netty的线程模型基于主从Reactor多线程,借用了MainReactor和SubReactor的结构,但是实际实现上,SubReactor和Worker线程在同一个线程池中:
EventLoopGroup bossGroup = new NioEventLoopGroup();
EventLoopGroup workerGroup = new NioEventLoopGroup();
ServerBootstrap server = new ServerBootstrap();
server.group(bossGroup, workerGroup)
.channel(NioServerSocketChannel.class)
上面代码中的bossGroup 和workerGroup是Bootstrap构造方法中传入的两个对象,这两个group均是线程池

  • bossGroup线程池则只是在bind某个端口后,获得其中一个线程作为MainReactor,专门处理端口的accept事件,每个端口对应一个boss线程
  • workerGroup线程池会被各个SubReactor和worker线程充分利用

    补充:事件驱动模型

    通常,我们设计一个事件处理模型的程序有两种思路

  • 轮询方式 线程不断轮询访问相关事件发生源有没有发生事件,有发生事件就调用事件处理逻辑。

  • 事件驱动方式 发生事件,主线程把事件放入事件队列,在另外线程不断循环消费事件列表中的事件,调用事件对应的处理逻辑处理事件。事件驱动方式也被称为消息通知方式,其实是设计模式中观察者模式的思路。

以GUI的逻辑处理为例,说明两种逻辑的不同:

  • 轮询方式 线程不断轮询是否发生按钮点击事件,如果发生,调用处理逻辑
  • 事件驱动方式 发生点击事件把事件放入事件队列,在另外线程消费的事件列表中的事件,根据事件类型调用相关事件处理逻辑

这里借用O’Reilly 大神关于事件驱动模型解释图
2. Netty - 图4

主要包括4个基本组件:

  • 事件队列(event queue):接收事件的入口,存储待处理事件
  • 分发器(event mediator):将不同的事件分发到不同的业务逻辑单元
  • 事件通道(event channel):分发器与处理器之间的联系渠道
  • 事件处理器(event processor):实现业务逻辑,处理完成后会发出事件,触发下一步操作

可以看出,相对传统轮询模式,事件驱动有如下优点:

  • 可扩展性好,分布式的异步架构,事件处理器之间高度解耦,可以方便扩展事件处理逻辑
  • 高性能,基于队列暂存事件,能方便并行异步处理事件

第六章:核心模块

Bootstrap、ServerBootstrap

Bootstrap意思是引导,一个Netty应用通常由一个Bootstrap开始,主要作用是配置整个Netty程序,串联各个组件,Netty中Bootstrap类是客户端程序的启动引导类,ServerBootstrap是服务端启动引导类。

Future、ChannelFuture

在Netty中所有的IO操作都是异步的,不能立刻得知消息是否被正确处理,但是可以过一会等它执行完成或者直接注册一个监听,具体的实现就是通过Future和ChannelFutures,他们可以注册一个监听,当操作执行成功或失败时监听会自动触发注册的监听事件。

Channel

Netty网络通信的组件,能够用于执行基本的 I/O 操作,如 bind、connect、read、write 等。 Channel为用户提供:

  • 当前网络连接的通道的状态(例如是否打开?是否已连接?)
  • 网络连接的配置参数 (例如接收缓冲区大小)
  • 提供异步的网络I/O操作(如建立连接,读写,绑定端口),异步调用意味着任何I / O调用都将立即返回,并且不保证在调用结束时所请求的I / O操作已完成。调用立即返回一个ChannelFuture实例,通过注册监听器到ChannelFuture上,可以I / O操作成功、失败或取消时回调通知调用方。
  • 支持关联I/O操作与对应的处理程序
  • 不同协议、不同的阻塞类型的连接都有不同的 Channel 类型与之对应,下面是一些常用的 Channel 类型
  • NioSocketChannel,异步的客户端 TCP Socket 连接
  • NioServerSocketChannel,异步的服务器端 TCP Socket 连接
  • NioDatagramChannel,异步的 UDP 连接
  • NioSctpChannel,异步的客户端 Sctp 连接
  • NioSctpServerChannel,异步的 Sctp 服务器端连接

这些通道涵盖了 UDP 和 TCP网络 IO以及文件 IO.

Selector

Netty基于Selector对象实现I/O多路复用,通过 Selector, 一个线程可以监听多个连接的Channel事件, 当向一个Selector中注册Channel 后,Selector 内部的机制就可以自动不断地查询(select) 这些注册的Channel是否有已就绪的I/O事件(例如可读, 可写, 网络连接完成等),这样程序就可以很简单地使用一个线程高效地管理多个 Channel 。

NioEventLoop

NioEventLoop中维护了一个线程和任务队列,支持异步提交执行任务,线程启动时会调用NioEventLoop的run方法,执行I/O任务和非I/O任务:

  • I/O任务 即selectionKey中ready的事件,如accept、connect、read、write等,由processSelectedKeys方法触发。
  • 非IO任务 添加到taskQueue中的任务,如register0、bind0等任务,由runAllTasks方法触发。

两种任务的执行时间比由变量ioRatio控制,默认为50,则表示允许非IO任务执行的时间与IO任务的执行时间相等。

NioEventLoopGroup

NioEventLoopGroup,主要管理eventLoop的生命周期,可以理解为一个线程池,内部维护了一组线程,每个线程(NioEventLoop)负责处理多个Channel上的事件,而一个Channel只对应于一个线程。

ChannelHandler

ChannelHandler是一个接口,处理I / O事件或拦截I / O操作,并将其转发到其ChannelPipeline(业务处理链)中的下一个处理程序。
ChannelHandler本身并没有提供很多方法,因为这个接口有许多的方法需要实现,方便使用期间,可以继承它的子类:

  • ChannelInboundHandler用于处理入站I / O事件
  • ChannelOutboundHandler用于处理出站I / O操作

或者使用以下适配器类:

  • ChannelInboundHandlerAdapter用于处理入站I / O事件
  • ChannelOutboundHandlerAdapter用于处理出站I / O操作
  • ChannelDuplexHandler用于处理入站和出站事件

  • ChannelHandlerContext

    保存Channel相关的所有上下文信息,同时关联一个ChannelHandler对象。
    即ChannelHandlerContext中 包含一个具体的事件处理器ChannelHandler ,同时ChannelHandlerContext 中也绑定了对应的 pipeline和 Channel 的信息,方便对ChannelHandler进行调用.

    Pipeline和ChannelPipline

    ChannelPipeline是一个重点:
    1) ChannelPipeline是一个Handler 的集合,它负责处理和拦截inbound或者 outbound 的事件和操作,相当于一个贯穿Netty 的链。(也可以这样理解: ChannelPipeline是保存ChannelHandler 的 List,用于处理或拦截Channel 的入站事件和出站操作)
    2) ChannelPipeline 实现了一种高级形式的拦截过滤器模式,使用户可以完全控制事件的处理方式,以及Channel中各个的ChannelHandler 如何相互交互
    3)在Netty 中每个Channel都有且仅有一个ChannelPipeline 与之对应,它们的组成关系如下
    2. Netty - 图5

入站Handler处理程序通常处理由图底部的I / O线程生成的入站数据。 通常通过实际输入操作(例如SocketChannel.read(ByteBuffer))从远程读取入站数据。
出站事件由上下方向处理,如图右侧所示。 出站Handler处理程序通常会生成或转换出站传输,例如write请求。 I/O线程通常执行实际的输出操作,例如SocketChannel.write(ByteBuffer)。
保存ChannelHandler的List,用于处理或拦截Channel的入站事件和出站操作。 ChannelPipeline实现了一种高级形式的拦截过滤器模式,使用户可以完全控制事件的处理方式,以及Channel中各个的ChannelHandler如何相互交互。
下图引用Netty的Javadoc4.1中ChannelPipline的说明,描述了ChannelPipeline中ChannelHandler通常如何处理I/O事件。 I/O事件由ChannelInboundHandler或ChannelOutboundHandler处理,并通过调用ChannelHandlerContext中定义的事件传播方法(例如ChannelHandlerContext.fireChannelRead(Object)和ChannelOutboundInvoker.write(Object))转发到其最近的处理程序。
2. Netty - 图6

一个 Channel 包含了一个 ChannelPipeline, 而 ChannelPipeline 中又维护了一个由 ChannelHandlerContext 组成的双向链表, 并且每个 ChannelHandlerContext 中又关联着一个 ChannelHandler。入站事件和出站事件在一个双向链表中,入站事件会从链表head往后传递到最后一个入站的handler,出站事件会从链表tail往前传递到最前一个出站的handler,两种类型的handler互不干扰。

Unpooled类

Netty提供了一个专门用来操作缓冲区(即Netty的数据容器)的工具类。

第七章:TCP粘包

I)TCP是面向连接的,面向流的,提供高可靠性服务。收发两端(客户端和服务器端)都要有一一成对的socket,因此,发送端为了将多个发给接收端的包,更有效的发给对方,使用了优化方法(Nagle算法),将多次间隔较小且数据量小的数据,合并成一个大的数据块,然后进行封包。这样做虽然提高了效率,但是接收端就难于分辨出完整的数据包了,因为面向流的通信是无消息保护边界的
2)由于TCP无消息保护边界,需要在接收端处理消息边界问题,也就是我们所说的粘包、拆包问题,看一张图

假设客户端分别发送了两个数据包D1和D2给服务端,由于服务端一次读取到字节数是不确定的,故可能存在以下四种情况:
1)服务端分两次读取到了两个独立的数据包,分别是D1和D2,没有粘包和拆包
2)服务端一次接受到了两个数据包,D1和D2粘合在一起,称之为TCP粘包
3)服务端分两次读取到了数据包,第一次读取到了完整的D1包和D2包的部分内容,第二次读取到了D2包的剩余内容,这称之为TCP拆包
4)服务端分两次读取到了数据包,第一次读取到了DI包的部分内容Dl_1,第二次读取到了D1包的剩余部分内容D1_2和完整的D2包。
解决:
使用自定义协议+编解码器来解决
关键就是要解决服务器端每次读取数据长度的问题,这个问题解决,就不会出现服务器多读或少读数据的问题,从而避免的TCP粘包、拆包。
原因:
TCP是以流的方式来处理数据,一个完整的包可能会被TCP拆分成多个包进行发送,也可能把小的封装成一个大的数据包发送。
TCP粘包/分包的原因:
应用程序写入的字节大小大于套接字发送缓冲区的大小,会发生拆包现象,而应用程序写入数据小于套接字缓冲区大小,网卡将应用多次写入的数据发送到网络上,这将会发生粘包现象;
进行MSS大小的TCP分段,当TCP报文长度-TCP头部长度>MSS的时候将发生拆包 以太网帧的payload(净荷)大于MTU(1500字节)进行ip分片。
解决方法
消息定长:FixedLengthFrameDecoder类
包尾增加特殊字符分割:

  • 行分隔符类:LineBasedFrameDecoder
  • 或自定义分隔符类 :DelimiterBasedFrameDecoder

将消息分为消息头和消息体:LengthFieldBasedFrameDecoder类。分为有头部的拆包与粘包、长度字段在前且有头部的拆包与粘包、多扩展头部的拆包与粘包。

异步的概念和同步相对。当一个异步过程调用发出后,调用者不能立刻得到结果。实际处理这个调用的部件在完成后,通过状态、通知和回调来通知调用者。
Netty中的I/O操作是异步的,包括bind、write、connect等操作会简单的返回一个ChannelFuture,调用者并不能立刻获得结果,通过Future-Listener机制,用户可以方便的主动获取或者通过通知机制获得IO操作结果。
当future对象刚刚创建时,处于非完成状态,调用者可以通过返回的ChannelFuture来获取操作执行的状态,注册监听函数来执行完成后的操,常见有如下操作:

  • 通过isDone方法来判断当前操作是否完成
  • 通过isSuccess方法来判断已完成的当前操作是否成功
  • 通过getCause方法来获取已完成的当前操作失败的原因
  • 通过isCancelled方法来判断已完成的当前操作是否被取消
  • 通过addListener方法来注册监听器,当操作已完成(isDone方法返回完成),将会通知指定的监听器;如果future对象已完成,则理解通知指定的监听器

例如下面的的代码中绑定端口是异步操作,当绑定操作处理完,将会调用相应的监听器处理逻辑
serverBootstrap.bind(port).addListener(future -> {
if (future.isSuccess()) {
System.out.println(new Date() + “: 端口[“ + port + “]绑定成功!”);
} else {
System.err.println(“端口[“ + port + “]绑定失败!”);
}
});
相比传统阻塞I/O,执行I/O操作后线程会被阻塞住, 直到操作完成;异步处理的好处是不会造成线程阻塞,线程在I/O操作期间可以执行别的程序,在高并发情形下会更稳定和更高的吞吐量。
Netty架构设计
前面介绍完Netty相关一些理论介绍,下面从功能特性、模块组件、运作过程来介绍Netty的架构设计

工作原理架构

初始化并启动Netty服务端过程如下:
public static void main(String[] args) {
// 创建mainReactor
NioEventLoopGroup boosGroup = new NioEventLoopGroup();
// 创建工作线程组
NioEventLoopGroup workerGroup = new NioEventLoopGroup();

  1. final ServerBootstrap serverBootstrap = new ServerBootstrap();<br /> serverBootstrap<br /> // 组装NioEventLoopGroup<br /> .group(boosGroup, workerGroup)<br /> // 设置channel类型为NIO类型<br /> .channel(NioServerSocketChannel.class)<br /> // 设置连接配置参数<br /> .option(ChannelOption.SO_BACKLOG, 1024)<br /> .childOption(ChannelOption.SO_KEEPALIVE, true)<br /> .childOption(ChannelOption.TCP_NODELAY, true)<br /> // 配置入站、出站事件handler<br /> .childHandler(new ChannelInitializer<NioSocketChannel>() {<br /> @Override<br /> protected void initChannel(NioSocketChannel ch) {<br /> // 配置入站、出站事件channel<br /> ch.pipeline().addLast(...);<br /> ch.pipeline().addLast(...);<br /> }<br /> });
  2. // 绑定端口<br /> int port = 8080;<br /> serverBootstrap.bind(port).addListener(future -> {<br /> if (future.isSuccess()) {<br /> System.out.println(new Date() + ": 端口[" + port + "]绑定成功!");<br /> } else {<br /> System.err.println("端口[" + port + "]绑定失败!");<br /> }<br /> });<br />}
  • 基本过程如下:
  • 1 初始化创建2个NioEventLoopGroup,其中boosGroup用于Accetpt连接建立事件并分发请求, workerGroup用于处理I/O读写事件和业务逻辑
  • 2 基于ServerBootstrap(服务端启动引导类),配置EventLoopGroup、Channel类型,连接参数、配置入站、出站事件handler
  • 3 绑定端口,开始工作

结合上面的介绍的Netty Reactor模型,介绍服务端Netty的工作架构图:
2. Netty - 图7

server端包含1个Boss NioEventLoopGroup和1个Worker NioEventLoopGroup,NioEventLoopGroup相当于1个事件循环组,这个组里包含多个事件循环NioEventLoop,每个NioEventLoop包含1个selector和1个事件循环线程。
每个Boss NioEventLoop循环执行的任务包含3步:

  • 1 轮询accept事件
  • 2 处理accept I/O事件,与Client建立连接,生成NioSocketChannel,并将NioSocketChannel注册到某个Worker NioEventLoop的Selector上 *3 处理任务队列中的任务,runAllTasks。任务队列中的任务包括用户调用eventloop.execute或schedule执行的任务,或者其它线程提交到该eventloop的任务。

每个Worker NioEventLoop循环执行的任务包含3步:

  • 1 轮询read、write事件;
  • 2 处I/O事件,即read、write事件,在NioSocketChannel可读、可写事件发生时进行处理
  • 3 处理任务队列中的任务,runAllTasks。

其中任务队列中的task有3种典型使用场景

  • 1 用户程序自定义的普通任务

ctx.channel().eventLoop().execute(new Runnable() {
@Override
public void run() {
//…
}
});

  • 2 非当前reactor线程调用channel的各种方法 例如在推送系统的业务线程里面,根据用户的标识,找到对应的channel引用,然后调用write类方法向该用户推送消息,就会进入到这种场景。最终的write会提交到任务队列中后被异步消费。
  • 3 用户自定义定时任务

ctx.channel().eventLoop().schedule(new Runnable() {
@Override
public void run() {

}
}, 60, TimeUnit.SECONDS);

问题

Netty 发送消息有几种方式?
Netty 有两种发送消息的方式:

  • 直接写入 Channel 中,消息从 ChannelPipeline 当中尾部开始移动;
  • 写入和 ChannelHandler 绑定的 ChannelHandlerContext 中,消息从 ChannelPipeline 中的下一个 ChannelHandler 中移动。

13.默认情况 Netty 起多少线程?何时启动?
Netty 默认是 CPU 处理器数的两倍,bind 完之后启动。
16.Netty 支持哪些心跳类型设置?

  • readerIdleTime:为读超时时间(即测试端一定时间内未接受到被测试端消息)。
  • writerIdleTime:为写超时时间(即测试端一定时间内向被测试端发送消息)。
  • allIdleTime:所有类型的超时时间。

转载 https://www.yuque.com/jykss/jykss/ogogrw