高等数学

1.导数定义:

导数和微分的概念

3.CS229-Math - 图1%3D%5Cunderset%7B%5CDelta%20x%5Cto%200%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Cfrac%7Bf(%7B%7Bx%7D%7B0%7D%7D%2B%5CDelta%20x)-f(%7B%7Bx%7D%7B0%7D%7D)%7D%7B%5CDelta%20x%7D#card=math&code=f%27%28%7B%7Bx%7D%7B0%7D%7D%29%3D%5Cunderset%7B%5CDelta%20x%5Cto%200%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Cfrac%7Bf%28%7B%7Bx%7D%7B0%7D%7D%2B%5CDelta%20x%29-f%28%7B%7Bx%7D_%7B0%7D%7D%29%7D%7B%5CDelta%20x%7D&id=XJoPe) (1)

或者:

3.CS229-Math - 图2%3D%5Cunderset%7Bx%5Cto%20%7B%7Bx%7D%7B0%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Cfrac%7Bf(x)-f(%7B%7Bx%7D%7B0%7D%7D)%7D%7Bx-%7B%7Bx%7D%7B0%7D%7D%7D#card=math&code=f%27%28%7B%7Bx%7D%7B0%7D%7D%29%3D%5Cunderset%7Bx%5Cto%20%7B%7Bx%7D%7B0%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Cfrac%7Bf%28x%29-f%28%7B%7Bx%7D%7B0%7D%7D%29%7D%7Bx-%7B%7Bx%7D_%7B0%7D%7D%7D&id=Ko2NQ) (2)

2.左右导数导数的几何意义和物理意义

函数3.CS229-Math - 图3#card=math&code=f%28x%29&id=g4pFl)在3.CS229-Math - 图4处的左、右导数分别定义为:

左导数:3.CS229-Math - 图5%3D%5Cunderset%7B%5CDelta%20x%5Cto%20%7B%7B0%7D%5E%7B-%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Cfrac%7Bf(%7B%7Bx%7D%7B0%7D%7D%2B%5CDelta%20x)-f(%7B%7Bx%7D%7B0%7D%7D)%7D%7B%5CDelta%20x%7D%3D%5Cunderset%7Bx%5Cto%20x%7B0%7D%5E%7B-%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Cfrac%7Bf(x)-f(%7B%7Bx%7D%7B0%7D%7D)%7D%7Bx-%7B%7Bx%7D%7B0%7D%7D%7D%2C(x%3D%7B%7Bx%7D%7B0%7D%7D%2B%5CDelta%20x)#card=math&code=%7B%7B%7Bf%7D%27%7D%7B-%7D%7D%28%7B%7Bx%7D%7B0%7D%7D%29%3D%5Cunderset%7B%5CDelta%20x%5Cto%20%7B%7B0%7D%5E%7B-%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Cfrac%7Bf%28%7B%7Bx%7D%7B0%7D%7D%2B%5CDelta%20x%29-f%28%7B%7Bx%7D%7B0%7D%7D%29%7D%7B%5CDelta%20x%7D%3D%5Cunderset%7Bx%5Cto%20x%7B0%7D%5E%7B-%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Cfrac%7Bf%28x%29-f%28%7B%7Bx%7D%7B0%7D%7D%29%7D%7Bx-%7B%7Bx%7D%7B0%7D%7D%7D%2C%28x%3D%7B%7Bx%7D%7B0%7D%7D%2B%5CDelta%20x%29&id=nG1eq)

右导数:3.CS229-Math - 图6%3D%5Cunderset%7B%5CDelta%20x%5Cto%20%7B%7B0%7D%5E%7B%2B%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Cfrac%7Bf(%7B%7Bx%7D%7B0%7D%7D%2B%5CDelta%20x)-f(%7B%7Bx%7D%7B0%7D%7D)%7D%7B%5CDelta%20x%7D%3D%5Cunderset%7Bx%5Cto%20x%7B0%7D%5E%7B%2B%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Cfrac%7Bf(x)-f(%7B%7Bx%7D%7B0%7D%7D)%7D%7Bx-%7B%7Bx%7D%7B0%7D%7D%7D#card=math&code=%7B%7B%7Bf%7D%27%7D%7B%2B%7D%7D%28%7B%7Bx%7D%7B0%7D%7D%29%3D%5Cunderset%7B%5CDelta%20x%5Cto%20%7B%7B0%7D%5E%7B%2B%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Cfrac%7Bf%28%7B%7Bx%7D%7B0%7D%7D%2B%5CDelta%20x%29-f%28%7B%7Bx%7D%7B0%7D%7D%29%7D%7B%5CDelta%20x%7D%3D%5Cunderset%7Bx%5Cto%20x%7B0%7D%5E%7B%2B%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Cfrac%7Bf%28x%29-f%28%7B%7Bx%7D%7B0%7D%7D%29%7D%7Bx-%7B%7Bx%7D%7B0%7D%7D%7D&id=YeFvC)

3.函数的可导性与连续性之间的关系

Th1: 函数3.CS229-Math - 图7#card=math&code=f%28x%29&id=FzjzQ)在3.CS229-Math - 图8处可微3.CS229-Math - 图9#card=math&code=%5CLeftrightarrow%20f%28x%29&id=jKZie)在3.CS229-Math - 图10处可导

Th2: 若函数在点3.CS229-Math - 图11处可导,则3.CS229-Math - 图12#card=math&code=y%3Df%28x%29&id=OgSu2)在点3.CS229-Math - 图13处连续,反之则不成立。即函数连续不一定可导。

Th3: 3.CS229-Math - 图14#card=math&code=%7Bf%7D%27%28%7B%7Bx%7D%7B0%7D%7D%29&id=rAboo)存在![](https://g.yuque.com/gr/latex?%5CLeftrightarrow%20%7B%7B%7Bf%7D'%7D%7B-%7D%7D(%7B%7Bx%7D%7B0%7D%7D)%3D%7B%7B%7Bf%7D’%7D%7B%2B%7D%7D(%7B%7Bx%7D%7B0%7D%7D)#card=math&code=%5CLeftrightarrow%20%7B%7B%7Bf%7D%27%7D%7B-%7D%7D%28%7B%7Bx%7D%7B0%7D%7D%29%3D%7B%7B%7Bf%7D%27%7D%7B%2B%7D%7D%28%7B%7Bx%7D_%7B0%7D%7D%29&id=onaEq)

4.平面曲线的切线和法线

切线方程 : 3.CS229-Math - 图15(x-%7B%7Bx%7D%7B0%7D%7D)#card=math&code=y-%7B%7By%7D%7B0%7D%7D%3Df%27%28%7B%7Bx%7D%7B0%7D%7D%29%28x-%7B%7Bx%7D%7B0%7D%7D%29&id=k4Iij)

法线方程:3.CS229-Math - 图16%7D(x-%7B%7Bx%7D%7B0%7D%7D)%2Cf’(%7B%7Bx%7D%7B0%7D%7D)%5Cne%200#card=math&code=y-%7B%7By%7D%7B0%7D%7D%3D-%5Cfrac%7B1%7D%7Bf%27%28%7B%7Bx%7D%7B0%7D%7D%29%7D%28x-%7B%7Bx%7D%7B0%7D%7D%29%2Cf%27%28%7B%7Bx%7D%7B0%7D%7D%29%5Cne%200&id=ie98a)

5.四则运算法则

设函数3.CS229-Math - 图17%EF%BC%8Cv%3Dv(x)#card=math&code=u%3Du%28x%29%EF%BC%8Cv%3Dv%28x%29&id=ExmRK)]在点3.CS229-Math - 图18可导则

(1) 3.CS229-Math - 图19%7D’%3D%7Bu%7D’%5Cpm%20%7Bv%7D’#card=math&code=%28u%5Cpm%20v%7B%29%7D%27%3D%7Bu%7D%27%5Cpm%20%7Bv%7D%27&id=XAP5A) 3.CS229-Math - 图20%3Ddu%5Cpm%20dv#card=math&code=d%28u%5Cpm%20v%29%3Ddu%5Cpm%20dv&id=CJO2V)

(2)3.CS229-Math - 图21%7D’%3Du%7Bv%7D’%2Bv%7Bu%7D’#card=math&code=%28uv%7B%29%7D%27%3Du%7Bv%7D%27%2Bv%7Bu%7D%27&id=TCXjk) 3.CS229-Math - 图22%3Dudv%2Bvdu#card=math&code=d%28uv%29%3Dudv%2Bvdu&id=i3fBR)

(3) 3.CS229-Math - 图23%7D’%3D%5Cfrac%7Bv%7Bu%7D’-u%7Bv%7D’%7D%7B%7B%7Bv%7D%5E%7B2%7D%7D%7D(v%5Cne%200)#card=math&code=%28%5Cfrac%7Bu%7D%7Bv%7D%7B%29%7D%27%3D%5Cfrac%7Bv%7Bu%7D%27-u%7Bv%7D%27%7D%7B%7B%7Bv%7D%5E%7B2%7D%7D%7D%28v%5Cne%200%29&id=bmov1) 3.CS229-Math - 图24%3D%5Cfrac%7Bvdu-udv%7D%7B%7B%7Bv%7D%5E%7B2%7D%7D%7D#card=math&code=d%28%5Cfrac%7Bu%7D%7Bv%7D%29%3D%5Cfrac%7Bvdu-udv%7D%7B%7B%7Bv%7D%5E%7B2%7D%7D%7D&id=lH8n7)

6.基本导数与微分表

(1) 3.CS229-Math - 图25(常数) 3.CS229-Math - 图26 3.CS229-Math - 图27

(2) 3.CS229-Math - 图28(3.CS229-Math - 图29为实数) 3.CS229-Math - 图30 3.CS229-Math - 图31

(3) 3.CS229-Math - 图32 3.CS229-Math - 图33 3.CS229-Math - 图34
特例: 3.CS229-Math - 图35%7D’%3D%7B%7B%7Be%7D%7D%5E%7Bx%7D%7D#card=math&code=%28%7B%7B%7Be%7D%7D%5E%7Bx%7D%7D%7B%29%7D%27%3D%7B%7B%7Be%7D%7D%5E%7Bx%7D%7D&id=YzbmA) 3.CS229-Math - 图36%3D%7B%7B%7Be%7D%7D%5E%7Bx%7D%7Ddx#card=math&code=d%28%7B%7B%7Be%7D%7D%5E%7Bx%7D%7D%29%3D%7B%7B%7Be%7D%7D%5E%7Bx%7D%7Ddx&id=YPXeB)

(4) 3.CS229-Math - 图37 3.CS229-Math - 图38

3.CS229-Math - 图39
特例:3.CS229-Math - 图40 3.CS229-Math - 图41%7D’%3D%5Cfrac%7B1%7D%7Bx%7D#card=math&code=%28%5Cln%20x%7B%29%7D%27%3D%5Cfrac%7B1%7D%7Bx%7D&id=sqZRX) 3.CS229-Math - 图42%3D%5Cfrac%7B1%7D%7Bx%7Ddx#card=math&code=d%28%5Cln%20x%29%3D%5Cfrac%7B1%7D%7Bx%7Ddx&id=oTa8i)

(5) 3.CS229-Math - 图43

3.CS229-Math - 图44 3.CS229-Math - 图45%3D%5Ccos%20xdx#card=math&code=d%28%5Csin%20x%29%3D%5Ccos%20xdx&id=ByELp)

(6) 3.CS229-Math - 图46

3.CS229-Math - 图47 3.CS229-Math - 图48%3D-%5Csin%20xdx#card=math&code=d%28%5Ccos%20x%29%3D-%5Csin%20xdx&id=P44Km)

(7) 3.CS229-Math - 图49

3.CS229-Math - 图50 3.CS229-Math - 图51%3D%7B%7B%5Csec%20%7D%5E%7B2%7D%7Dxdx#card=math&code=d%28%5Ctan%20x%29%3D%7B%7B%5Csec%20%7D%5E%7B2%7D%7Dxdx&id=i1x8r)

(8) 3.CS229-Math - 图52 3.CS229-Math - 图53 3.CS229-Math - 图54%3D-%7B%7B%5Ccsc%20%7D%5E%7B2%7D%7Dxdx#card=math&code=d%28%5Ccot%20x%29%3D-%7B%7B%5Ccsc%20%7D%5E%7B2%7D%7Dxdx&id=tT1yj)

(9) 3.CS229-Math - 图55 3.CS229-Math - 图56

3.CS229-Math - 图57%3D%5Csec%20x%5Ctan%20xdx#card=math&code=d%28%5Csec%20x%29%3D%5Csec%20x%5Ctan%20xdx&id=ezYtG)
(10) 3.CS229-Math - 图58 3.CS229-Math - 图59

3.CS229-Math - 图60%3D-%5Ccsc%20x%5Ccot%20xdx#card=math&code=d%28%5Ccsc%20x%29%3D-%5Ccsc%20x%5Ccot%20xdx&id=HtOLa)
(11) 3.CS229-Math - 图61

3.CS229-Math - 图62

3.CS229-Math - 图63%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B1-%7B%7Bx%7D%5E%7B2%7D%7D%7D%7Ddx#card=math&code=d%28%5Carcsin%20x%29%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B1-%7B%7Bx%7D%5E%7B2%7D%7D%7D%7Ddx&id=gzdVx)
(12) 3.CS229-Math - 图64

3.CS229-Math - 图65 3.CS229-Math - 图66%3D-%5Cfrac%7B1%7D%7B%5Csqrt%7B1-%7B%7Bx%7D%5E%7B2%7D%7D%7D%7Ddx#card=math&code=d%28%5Carccos%20x%29%3D-%5Cfrac%7B1%7D%7B%5Csqrt%7B1-%7B%7Bx%7D%5E%7B2%7D%7D%7D%7Ddx&id=g0od2)

(13) 3.CS229-Math - 图67

3.CS229-Math - 图68 3.CS229-Math - 图69%3D%5Cfrac%7B1%7D%7B1%2B%7B%7Bx%7D%5E%7B2%7D%7D%7Ddx#card=math&code=d%28%5Carctan%20x%29%3D%5Cfrac%7B1%7D%7B1%2B%7B%7Bx%7D%5E%7B2%7D%7D%7Ddx&id=yrxxS)

(14) 3.CS229-Math - 图70

3.CS229-Math - 图71

3.CS229-Math - 图72%3D-%5Cfrac%7B1%7D%7B1%2B%7B%7Bx%7D%5E%7B2%7D%7D%7Ddx#card=math&code=d%28%5Coperatorname%7Barc%7D%5Ccot%20x%29%3D-%5Cfrac%7B1%7D%7B1%2B%7B%7Bx%7D%5E%7B2%7D%7D%7Ddx&id=rV3eA)
(15) 3.CS229-Math - 图73

3.CS229-Math - 图74 3.CS229-Math - 图75%3Dchxdx#card=math&code=d%28shx%29%3Dchxdx&id=pYHWq)

(16) 3.CS229-Math - 图76

3.CS229-Math - 图77 3.CS229-Math - 图78%3Dshxdx#card=math&code=d%28chx%29%3Dshxdx&id=MV0vv)

7.复合函数,反函数,隐函数以及参数方程所确定的函数的微分法

(1) 反函数的运算法则: 设3.CS229-Math - 图79#card=math&code=y%3Df%28x%29&id=rJ7Py)在点3.CS229-Math - 图80的某邻域内单调连续,在点3.CS229-Math - 图81处可导且3.CS229-Math - 图82%5Cne%200#card=math&code=%7Bf%7D%27%28x%29%5Cne%200&id=THVBR),则其反函数在点3.CS229-Math - 图83所对应的3.CS229-Math - 图84处可导,并且有3.CS229-Math - 图85
(2) 复合函数的运算法则:若3.CS229-Math - 图86#card=math&code=%5Cmu%20%3D%5Cvarphi%20%28x%29&id=scuN8)在点3.CS229-Math - 图87可导,而3.CS229-Math - 图88#card=math&code=y%3Df%28%5Cmu%20%29&id=HqcRB)在对应点3.CS229-Math - 图89

(3) 隐函数导数3.CS229-Math - 图90的求法一般有三种方法:

1)方程两边对3.CS229-Math - 图91求导,要记住3.CS229-Math - 图923.CS229-Math - 图93的函数,则3.CS229-Math - 图94的函数是3.CS229-Math - 图95的复合函数.例如3.CS229-Math - 图963.CS229-Math - 图973.CS229-Math - 图983.CS229-Math - 图99等均是3.CS229-Math - 图100的复合函数.
3.CS229-Math - 图101求导应按复合函数连锁法则做.

2)公式法.由3.CS229-Math - 图102%3D0#card=math&code=F%28x%2Cy%29%3D0&id=bPCOn)知 3.CS229-Math - 图103%7D%7B%7B%7B%7B%7BF%7D’%7D%7D%7By%7D%7D(x%2Cy)%7D#card=math&code=%5Cfrac%7Bdy%7D%7Bdx%7D%3D-%5Cfrac%7B%7B%7B%7B%7BF%7D%27%7D%7D%7Bx%7D%7D%28x%2Cy%29%7D%7B%7B%7B%7B%7BF%7D%27%7D%7D%7By%7D%7D%28x%2Cy%29%7D&id=BMKjD),其中,![](https://g.yuque.com/gr/latex?%7B%7B%7BF%7D'%7D%7Bx%7D%7D(x%2Cy)#card=math&code=%7B%7B%7BF%7D%27%7D%7Bx%7D%7D%28x%2Cy%29&id=PTJxJ),
![](https://g.yuque.com/gr/latex?%7B%7B%7BF%7D'%7D
%7By%7D%7D(x%2Cy)#card=math&code=%7B%7B%7BF%7D%27%7D_%7By%7D%7D%28x%2Cy%29&id=zhcj5)分别表示3.CS229-Math - 图104#card=math&code=F%28x%2Cy%29&id=wEC9a)对3.CS229-Math - 图1053.CS229-Math - 图106的偏导数

3)利用微分形式不变性

8.常用高阶导数公式

(1)3.CS229-Math - 图107%7B%7B%5C%2C%7D%5E%7B(n)%7D%7D%3D%7B%7Ba%7D%5E%7Bx%7D%7D%7B%7B%5Cln%20%7D%5E%7Bn%7D%7Da%5Cquad%20(a%3E%7B0%7D)%5Cquad%20%5Cquad%20(%7B%7B%7Be%7D%7D%5E%7Bx%7D%7D)%7B%7B%5C%2C%7D%5E%7B(n)%7D%7D%3D%7Be%7D%7B%7B%5C%2C%7D%5E%7Bx%7D%7D#card=math&code=%28%7B%7Ba%7D%5E%7Bx%7D%7D%29%7B%7B%5C%2C%7D%5E%7B%28n%29%7D%7D%3D%7B%7Ba%7D%5E%7Bx%7D%7D%7B%7B%5Cln%20%7D%5E%7Bn%7D%7Da%5Cquad%20%28a%3E%7B0%7D%29%5Cquad%20%5Cquad%20%28%7B%7B%7Be%7D%7D%5E%7Bx%7D%7D%29%7B%7B%5C%2C%7D%5E%7B%28n%29%7D%7D%3D%7Be%7D%7B%7B%5C%2C%7D%5E%7Bx%7D%7D&id=zFId0)

(2)3.CS229-Math - 图108%7D%7B%7B%5C%2C%7D%5E%7B(n)%7D%7D%3D%7B%7Bk%7D%5E%7Bn%7D%7D%5Csin%20(kx%2Bn%5Ccdot%20%5Cfrac%7B%5Cpi%20%7D%7B%7B2%7D%7D)#card=math&code=%28%5Csin%20kx%7B%29%7D%7B%7B%5C%2C%7D%5E%7B%28n%29%7D%7D%3D%7B%7Bk%7D%5E%7Bn%7D%7D%5Csin%20%28kx%2Bn%5Ccdot%20%5Cfrac%7B%5Cpi%20%7D%7B%7B2%7D%7D%29&id=usfwC)

(3)3.CS229-Math - 图109%7D%7B%7B%5C%2C%7D%5E%7B(n)%7D%7D%3D%7B%7Bk%7D%5E%7Bn%7D%7D%5Ccos%20(kx%2Bn%5Ccdot%20%5Cfrac%7B%5Cpi%20%7D%7B%7B2%7D%7D)#card=math&code=%28%5Ccos%20kx%7B%29%7D%7B%7B%5C%2C%7D%5E%7B%28n%29%7D%7D%3D%7B%7Bk%7D%5E%7Bn%7D%7D%5Ccos%20%28kx%2Bn%5Ccdot%20%5Cfrac%7B%5Cpi%20%7D%7B%7B2%7D%7D%29&id=P3uij)

(4)3.CS229-Math - 图110%7B%7B%5C%2C%7D%5E%7B(n)%7D%7D%3Dm(m-1)%5Ccdots%20(m-n%2B1)%7B%7Bx%7D%5E%7Bm-n%7D%7D#card=math&code=%28%7B%7Bx%7D%5E%7Bm%7D%7D%29%7B%7B%5C%2C%7D%5E%7B%28n%29%7D%7D%3Dm%28m-1%29%5Ccdots%20%28m-n%2B1%29%7B%7Bx%7D%5E%7Bm-n%7D%7D&id=SaSYL)

(5)3.CS229-Math - 图111%7B%7B%5C%2C%7D%5E%7B(n)%7D%7D%3D%7B%7B(-%7B1%7D)%7D%5E%7B(n-%7B1%7D)%7D%7D%5Cfrac%7B(n-%7B1%7D)!%7D%7B%7B%7Bx%7D%5E%7Bn%7D%7D%7D#card=math&code=%28%5Cln%20x%29%7B%7B%5C%2C%7D%5E%7B%28n%29%7D%7D%3D%7B%7B%28-%7B1%7D%29%7D%5E%7B%28n-%7B1%7D%29%7D%7D%5Cfrac%7B%28n-%7B1%7D%29%21%7D%7B%7B%7Bx%7D%5E%7Bn%7D%7D%7D&id=Sayu3)

(6)莱布尼兹公式:若3.CS229-Math - 图112%5C%2C%2Cv(x)#card=math&code=u%28x%29%5C%2C%2Cv%28x%29&id=vZtwX)均3.CS229-Math - 图113阶可导,则
3.CS229-Math - 图114%7D%5E%7B(n)%7D%7D%3D%5Csum%5Climits%7Bi%3D%7B0%7D%7D%5E%7Bn%7D%7Bc%7Bn%7D%5E%7Bi%7D%7B%7Bu%7D%5E%7B(i)%7D%7D%7B%7Bv%7D%5E%7B(n-i)%7D%7D%7D#card=math&code=%7B%7B%28uv%29%7D%5E%7B%28n%29%7D%7D%3D%5Csum%5Climits%7Bi%3D%7B0%7D%7D%5E%7Bn%7D%7Bc%7Bn%7D%5E%7Bi%7D%7B%7Bu%7D%5E%7B%28i%29%7D%7D%7B%7Bv%7D%5E%7B%28n-i%29%7D%7D%7D&id=XGGrl),其中3.CS229-Math - 图115%7D%7D%3Du#card=math&code=%7B%7Bu%7D%5E%7B%28%7B0%7D%29%7D%7D%3Du&id=uFNDB),3.CS229-Math - 图116%7D%7D%3Dv#card=math&code=%7B%7Bv%7D%5E%7B%28%7B0%7D%29%7D%7D%3Dv&id=O92ih)

9.微分中值定理,泰勒公式

Th1:(费马定理)

若函数3.CS229-Math - 图117#card=math&code=f%28x%29&id=bjPtB)满足条件:

(1)函数3.CS229-Math - 图118#card=math&code=f%28x%29&id=uHgNP)在3.CS229-Math - 图119的某邻域内有定义,并且在此邻域内恒有
3.CS229-Math - 图120%5Cle%20f(%7B%7Bx%7D%7B0%7D%7D)#card=math&code=f%28x%29%5Cle%20f%28%7B%7Bx%7D%7B0%7D%7D%29&id=VeeIj)或3.CS229-Math - 图121%5Cge%20f(%7B%7Bx%7D%7B0%7D%7D)#card=math&code=f%28x%29%5Cge%20f%28%7B%7Bx%7D%7B0%7D%7D%29&id=Ep3Je),

(2) 3.CS229-Math - 图122#card=math&code=f%28x%29&id=v85Z9)在3.CS229-Math - 图123处可导,则有 3.CS229-Math - 图124%3D0#card=math&code=%7Bf%7D%27%28%7B%7Bx%7D_%7B0%7D%7D%29%3D0&id=wgtHK)

Th2:(罗尔定理)

设函数3.CS229-Math - 图125#card=math&code=f%28x%29&id=zdkYw)满足条件:

(1)在闭区间3.CS229-Math - 图126上连续;

(2)在3.CS229-Math - 图127#card=math&code=%28a%2Cb%29&id=FUB9Y)内可导;

(3)3.CS229-Math - 图128%3Df(b)#card=math&code=f%28a%29%3Df%28b%29&id=ut7k8);

则在3.CS229-Math - 图129#card=math&code=%28a%2Cb%29&id=Ptrfb)内一存在个3.CS229-Math - 图130,使 3.CS229-Math - 图131%3D0#card=math&code=%7Bf%7D%27%28%5Cxi%20%29%3D0&id=OEctZ)

Th3: (拉格朗日中值定理)

设函数3.CS229-Math - 图132#card=math&code=f%28x%29&id=eKfw0)满足条件:

(1)在3.CS229-Math - 图133上连续;

(2)在3.CS229-Math - 图134#card=math&code=%28a%2Cb%29&id=q2Y4c)内可导;

则在3.CS229-Math - 图135#card=math&code=%28a%2Cb%29&id=izS2X)内一存在个3.CS229-Math - 图136,使 3.CS229-Math - 图137-f(a)%7D%7Bb-a%7D%3D%7Bf%7D’(%5Cxi%20)#card=math&code=%5Cfrac%7Bf%28b%29-f%28a%29%7D%7Bb-a%7D%3D%7Bf%7D%27%28%5Cxi%20%29&id=JSYX9)

Th4: (柯西中值定理)

设函数3.CS229-Math - 图138#card=math&code=f%28x%29&id=BUDJx),3.CS229-Math - 图139#card=math&code=g%28x%29&id=xM77C)满足条件:
(1) 在3.CS229-Math - 图140上连续;

(2) 在3.CS229-Math - 图141#card=math&code=%28a%2Cb%29&id=PywVd)内可导且3.CS229-Math - 图142#card=math&code=%7Bf%7D%27%28x%29&id=rQIj4),3.CS229-Math - 图143#card=math&code=%7Bg%7D%27%28x%29&id=mqUQ9)均存在,且3.CS229-Math - 图144%5Cne%200#card=math&code=%7Bg%7D%27%28x%29%5Cne%200&id=c9CuK)

则在3.CS229-Math - 图145#card=math&code=%28a%2Cb%29&id=pmBqV)内存在一个3.CS229-Math - 图146,使 3.CS229-Math - 图147-f(a)%7D%7Bg(b)-g(a)%7D%3D%5Cfrac%7B%7Bf%7D’(%5Cxi%20)%7D%7B%7Bg%7D’(%5Cxi%20)%7D#card=math&code=%5Cfrac%7Bf%28b%29-f%28a%29%7D%7Bg%28b%29-g%28a%29%7D%3D%5Cfrac%7B%7Bf%7D%27%28%5Cxi%20%29%7D%7B%7Bg%7D%27%28%5Cxi%20%29%7D&id=tW6L4)

10.洛必达法则

法则 Ⅰ (3.CS229-Math - 图148型)

设函数3.CS229-Math - 图149%2Cg%5Cleft(%20x%20%5Cright)#card=math&code=f%5Cleft%28%20x%20%5Cright%29%2Cg%5Cleft%28%20x%20%5Cright%29&id=Hqbdg)

满足条件:

3.CS229-Math - 图150%3D0%2C%5Cunderset%7Bx%5Cto%20%7B%7Bx%7D%7B0%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2Cg%5Cleft(%20x%20%5Cright)%3D0#card=math&code=%5Cunderset%7Bx%5Cto%20%7B%7Bx%7D%7B0%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2Cf%5Cleft%28%20x%20%5Cright%29%3D0%2C%5Cunderset%7Bx%5Cto%20%7B%7Bx%7D_%7B0%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2Cg%5Cleft%28%20x%20%5Cright%29%3D0&id=r5JHp);

3.CS229-Math - 图151%2Cg%5Cleft(%20x%20%5Cright)#card=math&code=f%5Cleft%28%20x%20%5Cright%29%2Cg%5Cleft%28%20x%20%5Cright%29&id=XFBNp)在3.CS229-Math - 图152的邻域内可导,(在3.CS229-Math - 图153处可除外)且3.CS229-Math - 图154%5Cne%200#card=math&code=%7Bg%7D%27%5Cleft%28%20x%20%5Cright%29%5Cne%200&id=kBniL);

3.CS229-Math - 图155%7D%7B%7Bg%7D’%5Cleft(%20x%20%5Cright)%7D#card=math&code=%5Cunderset%7Bx%5Cto%20%7B%7Bx%7D_%7B0%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Cfrac%7B%7Bf%7D%27%5Cleft%28%20x%20%5Cright%29%7D%7B%7Bg%7D%27%5Cleft%28%20x%20%5Cright%29%7D&id=dME9e)存在(或3.CS229-Math - 图156)。

则:
3.CS229-Math - 图157%7D%7Bg%5Cleft(%20x%20%5Cright)%7D%3D%5Cunderset%7Bx%5Cto%20%7B%7Bx%7D%7B0%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Cfrac%7B%7Bf%7D’%5Cleft(%20x%20%5Cright)%7D%7B%7Bg%7D’%5Cleft(%20x%20%5Cright)%7D#card=math&code=%5Cunderset%7Bx%5Cto%20%7B%7Bx%7D%7B0%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Cfrac%7Bf%5Cleft%28%20x%20%5Cright%29%7D%7Bg%5Cleft%28%20x%20%5Cright%29%7D%3D%5Cunderset%7Bx%5Cto%20%7B%7Bx%7D_%7B0%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Cfrac%7B%7Bf%7D%27%5Cleft%28%20x%20%5Cright%29%7D%7B%7Bg%7D%27%5Cleft%28%20x%20%5Cright%29%7D&id=UEbwV)。
法则3.CS229-Math - 图158 (3.CS229-Math - 图159型)

设函数3.CS229-Math - 图160%2Cg%5Cleft(%20x%20%5Cright)#card=math&code=f%5Cleft%28%20x%20%5Cright%29%2Cg%5Cleft%28%20x%20%5Cright%29&id=zqMy7)

满足条件:

3.CS229-Math - 图161%3D0%2C%5Cunderset%7Bx%20%5Cto%20%5Cinfty%7D%7B%5Cmathop%7B%5Clim%7D%7D%5C%2Cg%5Cleft(x%20%5Cright)%3D0#card=math&code=%5Cunderset%7Bx%5Cto%20%5Cinfty%20%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2Cf%5Cleft%28x%20%5Cright%29%3D0%2C%5Cunderset%7Bx%20%5Cto%20%5Cinfty%7D%7B%5Cmathop%7B%5Clim%7D%7D%5C%2Cg%5Cleft%28x%20%5Cright%29%3D0&id=KyUfO);

存在一个3.CS229-Math - 图162,当3.CS229-Math - 图163时,3.CS229-Math - 图164%2Cg%5Cleft(%20x%20%5Cright)#card=math&code=f%5Cleft%28%20x%20%5Cright%29%2Cg%5Cleft%28%20x%20%5Cright%29&id=QEprH)可导,且3.CS229-Math - 图165%5Cne%200#card=math&code=%7Bg%7D%27%5Cleft%28%20x%20%5Cright%29%5Cne%200&id=kx7mf);3.CS229-Math - 图166%7D%7B%7Bg%7D’%5Cleft(x%20%5Cright)%7D#card=math&code=%5Cunderset%7Bx%5Cto%20%7B%7Bx%7D_%7B0%7D%7D%7D%7B%5Cmathop%7B%5Clim%7D%7D%5C%2C%5Cfrac%7B%7Bf%7D%27%5Cleft%28x%20%5Cright%29%7D%7B%7Bg%7D%27%5Cleft%28x%20%5Cright%29%7D&id=LBZuu)存在(或3.CS229-Math - 图167)。

则:
3.CS229-Math - 图168%7D%7Bg%5Cleft(%20x%20%5Cright)%7D%3D%5Cunderset%7Bx%5Cto%20%7B%7Bx%7D%7B0%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Cfrac%7B%7Bf%7D’%5Cleft(%20x%20%5Cright)%7D%7B%7Bg%7D’%5Cleft(%20x%20%5Cright)%7D#card=math&code=%5Cunderset%7Bx%5Cto%20%7B%7Bx%7D%7B0%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Cfrac%7Bf%5Cleft%28%20x%20%5Cright%29%7D%7Bg%5Cleft%28%20x%20%5Cright%29%7D%3D%5Cunderset%7Bx%5Cto%20%7B%7Bx%7D_%7B0%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Cfrac%7B%7Bf%7D%27%5Cleft%28%20x%20%5Cright%29%7D%7B%7Bg%7D%27%5Cleft%28%20x%20%5Cright%29%7D&id=yEp20)

法则 Ⅱ(3.CS229-Math - 图169型)

设函数3.CS229-Math - 图170%2Cg%5Cleft(%20x%20%5Cright)#card=math&code=f%5Cleft%28%20x%20%5Cright%29%2Cg%5Cleft%28%20x%20%5Cright%29&id=clgVd)满足条件:
3.CS229-Math - 图171%3D%5Cinfty%20%2C%5Cunderset%7Bx%5Cto%20%7B%7Bx%7D%7B0%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2Cg%5Cleft(%20x%20%5Cright)%3D%5Cinfty#card=math&code=%5Cunderset%7Bx%5Cto%20%7B%7Bx%7D%7B0%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2Cf%5Cleft%28%20x%20%5Cright%29%3D%5Cinfty%20%2C%5Cunderset%7Bx%5Cto%20%7B%7Bx%7D_%7B0%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2Cg%5Cleft%28%20x%20%5Cright%29%3D%5Cinfty&id=krURL);

3.CS229-Math - 图172%2Cg%5Cleft(%20x%20%5Cright)#card=math&code=f%5Cleft%28%20x%20%5Cright%29%2Cg%5Cleft%28%20x%20%5Cright%29&id=XTgy2)在3.CS229-Math - 图173 的邻域内可导(在3.CS229-Math - 图174处可除外)且3.CS229-Math - 图175%5Cne%200#card=math&code=%7Bg%7D%27%5Cleft%28%20x%20%5Cright%29%5Cne%200&id=o5fXV);3.CS229-Math - 图176%7D%7B%7Bg%7D’%5Cleft(%20x%20%5Cright)%7D#card=math&code=%5Cunderset%7Bx%5Cto%20%7B%7Bx%7D_%7B0%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Cfrac%7B%7Bf%7D%27%5Cleft%28%20x%20%5Cright%29%7D%7B%7Bg%7D%27%5Cleft%28%20x%20%5Cright%29%7D&id=fadek)存在(或3.CS229-Math - 图177)。

3.CS229-Math - 图178%7D%7Bg%5Cleft(%20x%20%5Cright)%7D%3D%5Cunderset%7Bx%5Cto%20%7B%7Bx%7D%7B0%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Cfrac%7B%7Bf%7D’%5Cleft(%20x%20%5Cright)%7D%7B%7Bg%7D’%5Cleft(%20x%20%5Cright)%7D.#card=math&code=%5Cunderset%7Bx%5Cto%20%7B%7Bx%7D%7B0%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Cfrac%7Bf%5Cleft%28%20x%20%5Cright%29%7D%7Bg%5Cleft%28%20x%20%5Cright%29%7D%3D%5Cunderset%7Bx%5Cto%20%7B%7Bx%7D_%7B0%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Cfrac%7B%7Bf%7D%27%5Cleft%28%20x%20%5Cright%29%7D%7B%7Bg%7D%27%5Cleft%28%20x%20%5Cright%29%7D.&id=OiMCU)

同理法则3.CS229-Math - 图179(3.CS229-Math - 图180型)仿法则3.CS229-Math - 图181可写出。

11.泰勒公式

设函数3.CS229-Math - 图182#card=math&code=f%28x%29&id=vbDym)在点3.CS229-Math - 图183处的某邻域内具有3.CS229-Math - 图184阶导数,则对该邻域内异于3.CS229-Math - 图185的任意点3.CS229-Math - 图186,在3.CS229-Math - 图1873.CS229-Math - 图188之间至少存在
一个3.CS229-Math - 图189,使得:

3.CS229-Math - 图190%3Df(%7B%7Bx%7D%7B0%7D%7D)%2B%7Bf%7D’(%7B%7Bx%7D%7B0%7D%7D)(x-%7B%7Bx%7D%7B0%7D%7D)%2B%5Cfrac%7B1%7D%7B2!%7D%7Bf%7D’’(%7B%7Bx%7D%7B0%7D%7D)%7B%7B(x-%7B%7Bx%7D%7B0%7D%7D)%7D%5E%7B2%7D%7D%2B%5Ccdots#card=math&code=f%28x%29%3Df%28%7B%7Bx%7D%7B0%7D%7D%29%2B%7Bf%7D%27%28%7B%7Bx%7D%7B0%7D%7D%29%28x-%7B%7Bx%7D%7B0%7D%7D%29%2B%5Cfrac%7B1%7D%7B2%21%7D%7Bf%7D%27%27%28%7B%7Bx%7D%7B0%7D%7D%29%7B%7B%28x-%7B%7Bx%7D%7B0%7D%7D%29%7D%5E%7B2%7D%7D%2B%5Ccdots&id=luEwM)

3.CS229-Math - 图191%7D%7D(%7B%7Bx%7D%7B0%7D%7D)%7D%7Bn!%7D%7B%7B(x-%7B%7Bx%7D%7B0%7D%7D)%7D%5E%7Bn%7D%7D%2B%7B%7BR%7D%7Bn%7D%7D(x)#card=math&code=%2B%5Cfrac%7B%7B%7Bf%7D%5E%7B%28n%29%7D%7D%28%7B%7Bx%7D%7B0%7D%7D%29%7D%7Bn%21%7D%7B%7B%28x-%7B%7Bx%7D%7B0%7D%7D%29%7D%5E%7Bn%7D%7D%2B%7B%7BR%7D%7Bn%7D%7D%28x%29&id=fflgO)

其中 3.CS229-Math - 图192%3D%5Cfrac%7B%7B%7Bf%7D%5E%7B(n%2B1)%7D%7D(%5Cxi%20)%7D%7B(n%2B1)!%7D%7B%7B(x-%7B%7Bx%7D%7B0%7D%7D)%7D%5E%7Bn%2B1%7D%7D#card=math&code=%7B%7BR%7D%7Bn%7D%7D%28x%29%3D%5Cfrac%7B%7B%7Bf%7D%5E%7B%28n%2B1%29%7D%7D%28%5Cxi%20%29%7D%7B%28n%2B1%29%21%7D%7B%7B%28x-%7B%7Bx%7D%7B0%7D%7D%29%7D%5E%7Bn%2B1%7D%7D&id=f6WgO)称为3.CS229-Math - 图193#card=math&code=f%28x%29&id=iNCx7)在点![](https://g.yuque.com/gr/latex?%7B%7Bx%7D%7B0%7D%7D#card=math&code=%7B%7Bx%7D_%7B0%7D%7D&id=yWME3)处的3.CS229-Math - 图194阶泰勒余项。

3.CS229-Math - 图195,则3.CS229-Math - 图196阶泰勒公式
3.CS229-Math - 图197%3Df(0)%2B%7Bf%7D’(0)x%2B%5Cfrac%7B1%7D%7B2!%7D%7Bf%7D’’(0)%7B%7Bx%7D%5E%7B2%7D%7D%2B%5Ccdots%20%2B%5Cfrac%7B%7B%7Bf%7D%5E%7B(n)%7D%7D(0)%7D%7Bn!%7D%7B%7Bx%7D%5E%7Bn%7D%7D%2B%7B%7BR%7D%7Bn%7D%7D(x)#card=math&code=f%28x%29%3Df%280%29%2B%7Bf%7D%27%280%29x%2B%5Cfrac%7B1%7D%7B2%21%7D%7Bf%7D%27%27%280%29%7B%7Bx%7D%5E%7B2%7D%7D%2B%5Ccdots%20%2B%5Cfrac%7B%7B%7Bf%7D%5E%7B%28n%29%7D%7D%280%29%7D%7Bn%21%7D%7B%7Bx%7D%5E%7Bn%7D%7D%2B%7B%7BR%7D%7Bn%7D%7D%28x%29&id=tAlCn)……(1)

其中 3.CS229-Math - 图198%3D%5Cfrac%7B%7B%7Bf%7D%5E%7B(n%2B1)%7D%7D(%5Cxi%20)%7D%7B(n%2B1)!%7D%7B%7Bx%7D%5E%7Bn%2B1%7D%7D#card=math&code=%7B%7BR%7D_%7Bn%7D%7D%28x%29%3D%5Cfrac%7B%7B%7Bf%7D%5E%7B%28n%2B1%29%7D%7D%28%5Cxi%20%29%7D%7B%28n%2B1%29%21%7D%7B%7Bx%7D%5E%7Bn%2B1%7D%7D&id=VHWRU),3.CS229-Math - 图199之间.(1)式称为麦克劳林公式

常用五种函数在3.CS229-Math - 图200处的泰勒公式

(1) 3.CS229-Math - 图201!%7D%7B%7Be%7D%5E%7B%5Cxi%20%7D%7D#card=math&code=%7B%7B%7Be%7D%7D%5E%7Bx%7D%7D%3D1%2Bx%2B%5Cfrac%7B1%7D%7B2%21%7D%7B%7Bx%7D%5E%7B2%7D%7D%2B%5Ccdots%20%2B%5Cfrac%7B1%7D%7Bn%21%7D%7B%7Bx%7D%5E%7Bn%7D%7D%2B%5Cfrac%7B%7B%7Bx%7D%5E%7Bn%2B1%7D%7D%7D%7B%28n%2B1%29%21%7D%7B%7Be%7D%5E%7B%5Cxi%20%7D%7D&id=NzPMN)

3.CS229-Math - 图202#card=math&code=%3D1%2Bx%2B%5Cfrac%7B1%7D%7B2%21%7D%7B%7Bx%7D%5E%7B2%7D%7D%2B%5Ccdots%20%2B%5Cfrac%7B1%7D%7Bn%21%7D%7B%7Bx%7D%5E%7Bn%7D%7D%2Bo%28%7B%7Bx%7D%5E%7Bn%7D%7D%29&id=o9tvo)

(2) 3.CS229-Math - 图203!%7D%5Csin%20(%5Cxi%20%2B%5Cfrac%7Bn%2B1%7D%7B2%7D%5Cpi%20)#card=math&code=%5Csin%20x%3Dx-%5Cfrac%7B1%7D%7B3%21%7D%7B%7Bx%7D%5E%7B3%7D%7D%2B%5Ccdots%20%2B%5Cfrac%7B%7B%7Bx%7D%5E%7Bn%7D%7D%7D%7Bn%21%7D%5Csin%20%5Cfrac%7Bn%5Cpi%20%7D%7B2%7D%2B%5Cfrac%7B%7B%7Bx%7D%5E%7Bn%2B1%7D%7D%7D%7B%28n%2B1%29%21%7D%5Csin%20%28%5Cxi%20%2B%5Cfrac%7Bn%2B1%7D%7B2%7D%5Cpi%20%29&id=YVixV)

3.CS229-Math - 图204#card=math&code=%3Dx-%5Cfrac%7B1%7D%7B3%21%7D%7B%7Bx%7D%5E%7B3%7D%7D%2B%5Ccdots%20%2B%5Cfrac%7B%7B%7Bx%7D%5E%7Bn%7D%7D%7D%7Bn%21%7D%5Csin%20%5Cfrac%7Bn%5Cpi%20%7D%7B2%7D%2Bo%28%7B%7Bx%7D%5E%7Bn%7D%7D%29&id=EcKEk)

(3) 3.CS229-Math - 图205!%7D%5Ccos%20(%5Cxi%20%2B%5Cfrac%7Bn%2B1%7D%7B2%7D%5Cpi%20)#card=math&code=%5Ccos%20x%3D1-%5Cfrac%7B1%7D%7B2%21%7D%7B%7Bx%7D%5E%7B2%7D%7D%2B%5Ccdots%20%2B%5Cfrac%7B%7B%7Bx%7D%5E%7Bn%7D%7D%7D%7Bn%21%7D%5Ccos%20%5Cfrac%7Bn%5Cpi%20%7D%7B2%7D%2B%5Cfrac%7B%7B%7Bx%7D%5E%7Bn%2B1%7D%7D%7D%7B%28n%2B1%29%21%7D%5Ccos%20%28%5Cxi%20%2B%5Cfrac%7Bn%2B1%7D%7B2%7D%5Cpi%20%29&id=RU0jJ)

3.CS229-Math - 图206#card=math&code=%3D1-%5Cfrac%7B1%7D%7B2%21%7D%7B%7Bx%7D%5E%7B2%7D%7D%2B%5Ccdots%20%2B%5Cfrac%7B%7B%7Bx%7D%5E%7Bn%7D%7D%7D%7Bn%21%7D%5Ccos%20%5Cfrac%7Bn%5Cpi%20%7D%7B2%7D%2Bo%28%7B%7Bx%7D%5E%7Bn%7D%7D%29&id=WgSW9)

(4) 3.CS229-Math - 图207%3Dx-%5Cfrac%7B1%7D%7B2%7D%7B%7Bx%7D%5E%7B2%7D%7D%2B%5Cfrac%7B1%7D%7B3%7D%7B%7Bx%7D%5E%7B3%7D%7D-%5Ccdots%20%2B%7B%7B(-1)%7D%5E%7Bn-1%7D%7D%5Cfrac%7B%7B%7Bx%7D%5E%7Bn%7D%7D%7D%7Bn%7D%2B%5Cfrac%7B%7B%7B(-1)%7D%5E%7Bn%7D%7D%7B%7Bx%7D%5E%7Bn%2B1%7D%7D%7D%7B(n%2B1)%7B%7B(1%2B%5Cxi%20)%7D%5E%7Bn%2B1%7D%7D%7D#card=math&code=%5Cln%20%281%2Bx%29%3Dx-%5Cfrac%7B1%7D%7B2%7D%7B%7Bx%7D%5E%7B2%7D%7D%2B%5Cfrac%7B1%7D%7B3%7D%7B%7Bx%7D%5E%7B3%7D%7D-%5Ccdots%20%2B%7B%7B%28-1%29%7D%5E%7Bn-1%7D%7D%5Cfrac%7B%7B%7Bx%7D%5E%7Bn%7D%7D%7D%7Bn%7D%2B%5Cfrac%7B%7B%7B%28-1%29%7D%5E%7Bn%7D%7D%7B%7Bx%7D%5E%7Bn%2B1%7D%7D%7D%7B%28n%2B1%29%7B%7B%281%2B%5Cxi%20%29%7D%5E%7Bn%2B1%7D%7D%7D&id=tJszc)

3.CS229-Math - 图208%7D%5E%7Bn-1%7D%7D%5Cfrac%7B%7B%7Bx%7D%5E%7Bn%7D%7D%7D%7Bn%7D%2Bo(%7B%7Bx%7D%5E%7Bn%7D%7D)#card=math&code=%3Dx-%5Cfrac%7B1%7D%7B2%7D%7B%7Bx%7D%5E%7B2%7D%7D%2B%5Cfrac%7B1%7D%7B3%7D%7B%7Bx%7D%5E%7B3%7D%7D-%5Ccdots%20%2B%7B%7B%28-1%29%7D%5E%7Bn-1%7D%7D%5Cfrac%7B%7B%7Bx%7D%5E%7Bn%7D%7D%7D%7Bn%7D%2Bo%28%7B%7Bx%7D%5E%7Bn%7D%7D%29&id=ERNu7)

(5) 3.CS229-Math - 图209%7D%5E%7Bm%7D%7D%3D1%2Bmx%2B%5Cfrac%7Bm(m-1)%7D%7B2!%7D%7B%7Bx%7D%5E%7B2%7D%7D%2B%5Ccdots%20%2B%5Cfrac%7Bm(m-1)%5Ccdots%20(m-n%2B1)%7D%7Bn!%7D%7B%7Bx%7D%5E%7Bn%7D%7D#card=math&code=%7B%7B%281%2Bx%29%7D%5E%7Bm%7D%7D%3D1%2Bmx%2B%5Cfrac%7Bm%28m-1%29%7D%7B2%21%7D%7B%7Bx%7D%5E%7B2%7D%7D%2B%5Ccdots%20%2B%5Cfrac%7Bm%28m-1%29%5Ccdots%20%28m-n%2B1%29%7D%7Bn%21%7D%7B%7Bx%7D%5E%7Bn%7D%7D&id=LBUQ7)
3.CS229-Math - 图210%5Ccdots%20(m-n%2B1)%7D%7B(n%2B1)!%7D%7B%7Bx%7D%5E%7Bn%2B1%7D%7D%7B%7B(1%2B%5Cxi%20)%7D%5E%7Bm-n-1%7D%7D#card=math&code=%2B%5Cfrac%7Bm%28m-1%29%5Ccdots%20%28m-n%2B1%29%7D%7B%28n%2B1%29%21%7D%7B%7Bx%7D%5E%7Bn%2B1%7D%7D%7B%7B%281%2B%5Cxi%20%29%7D%5E%7Bm-n-1%7D%7D&id=vrJ1M)

3.CS229-Math - 图211%7D%5E%7Bm%7D%7D%3D1%2Bmx%2B%5Cfrac%7Bm(m-1)%7D%7B2!%7D%7B%7Bx%7D%5E%7B2%7D%7D%2B%5Ccdots#card=math&code=%7B%7B%281%2Bx%29%7D%5E%7Bm%7D%7D%3D1%2Bmx%2B%5Cfrac%7Bm%28m-1%29%7D%7B2%21%7D%7B%7Bx%7D%5E%7B2%7D%7D%2B%5Ccdots&id=UvotB) 3.CS229-Math - 图212%5Ccdots(m-n%2B1)%7D%7Bn!%7D%7B%7Bx%7D%5E%7Bn%7D%7D%2Bo(%7B%7Bx%7D%5E%7Bn%7D%7D)#card=math&code=%2B%5Cfrac%7Bm%28m-1%29%5Ccdots%28m-n%2B1%29%7D%7Bn%21%7D%7B%7Bx%7D%5E%7Bn%7D%7D%2Bo%28%7B%7Bx%7D%5E%7Bn%7D%7D%29&id=f4gZP)

12.函数单调性的判断

Th1:

设函数3.CS229-Math - 图213#card=math&code=f%28x%29&id=y2z4I)在3.CS229-Math - 图214#card=math&code=%28a%2Cb%29&id=iEeRY)区间内可导,如果对3.CS229-Math - 图215#card=math&code=%5Cforall%20x%5Cin%20%28a%2Cb%29&id=LSTZ1),都有3.CS229-Math - 图216%3E0#card=math&code=f%5C%2C%27%28x%29%3E0&id=kS4Uy)(或3.CS229-Math - 图217%3C0#card=math&code=f%5C%2C%27%28x%29%3C0&id=EQAgt)),则函数3.CS229-Math - 图218#card=math&code=f%28x%29&id=o5aFQ)在3.CS229-Math - 图219#card=math&code=%28a%2Cb%29&id=pqXYU)内是单调增加的(或单调减少)

Th2:

(取极值的必要条件)设函数3.CS229-Math - 图220#card=math&code=f%28x%29&id=FiMiM)在3.CS229-Math - 图221处可导,且在3.CS229-Math - 图222处取极值,则3.CS229-Math - 图223%3D0#card=math&code=f%5C%2C%27%28%7B%7Bx%7D_%7B0%7D%7D%29%3D0&id=cnuVe)。

Th3:

(取极值的第一充分条件)设函数3.CS229-Math - 图224#card=math&code=f%28x%29&id=hIEcC)在3.CS229-Math - 图225的某一邻域内可微,且3.CS229-Math - 图226%3D0#card=math&code=f%5C%2C%27%28%7B%7Bx%7D%7B0%7D%7D%29%3D0&id=RPixW)(或3.CS229-Math - 图227#card=math&code=f%28x%29&id=w3utC)在![](https://g.yuque.com/gr/latex?%7B%7Bx%7D%7B0%7D%7D#card=math&code=%7B%7Bx%7D%7B0%7D%7D&id=z4VAd)处连续,但![](https://g.yuque.com/gr/latex?f%5C%2C'(%7B%7Bx%7D%7B0%7D%7D)#card=math&code=f%5C%2C%27%28%7B%7Bx%7D_%7B0%7D%7D%29&id=Abfjz)不存在。)

(1)若当3.CS229-Math - 图228经过3.CS229-Math - 图229时,3.CS229-Math - 图230#card=math&code=f%5C%2C%27%28x%29&id=nTyvk)由“+”变“-”,则3.CS229-Math - 图231#card=math&code=f%28%7B%7Bx%7D_%7B0%7D%7D%29&id=Gghn6)为极大值;

(2)若当3.CS229-Math - 图232经过3.CS229-Math - 图233时,3.CS229-Math - 图234#card=math&code=f%5C%2C%27%28x%29&id=VWXZY)由“-”变“+”,则3.CS229-Math - 图235#card=math&code=f%28%7B%7Bx%7D_%7B0%7D%7D%29&id=t90uL)为极小值;

(3)若3.CS229-Math - 图236经过3.CS229-Math - 图237的两侧不变号,则3.CS229-Math - 图238#card=math&code=f%28%7B%7Bx%7D_%7B0%7D%7D%29&id=s2UdL)不是极值。

Th4:

(取极值的第二充分条件)设3.CS229-Math - 图239#card=math&code=f%28x%29&id=p1JTi)在点3.CS229-Math - 图240处有3.CS229-Math - 图241%5Cne%200#card=math&code=f%27%27%28x%29%5Cne%200&id=uBjYj),且3.CS229-Math - 图242%3D0#card=math&code=f%5C%2C%27%28%7B%7Bx%7D%7B0%7D%7D%29%3D0&id=vwUKg),则 当![](https://g.yuque.com/gr/latex?f'%5C%2C'(%7B%7Bx%7D%7B0%7D%7D)%3C0#card=math&code=f%27%5C%2C%27%28%7B%7Bx%7D%7B0%7D%7D%29%3C0&id=goo2Y)时,![](https://g.yuque.com/gr/latex?f(%7B%7Bx%7D%7B0%7D%7D)#card=math&code=f%28%7B%7Bx%7D%7B0%7D%7D%29&id=Nae8U)为极大值;
当![](https://g.yuque.com/gr/latex?f'%5C%2C'(%7B%7Bx%7D
%7B0%7D%7D)%3E0#card=math&code=f%27%5C%2C%27%28%7B%7Bx%7D%7B0%7D%7D%29%3E0&id=CyQ2U)时,![](https://g.yuque.com/gr/latex?f(%7B%7Bx%7D%7B0%7D%7D)#card=math&code=f%28%7B%7Bx%7D%7B0%7D%7D%29&id=f3Gl7)为极小值。
注:如果![](https://g.yuque.com/gr/latex?f'%5C%2C'(%7B%7Bx%7D
%7B0%7D%7D)%3C0#card=math&code=f%27%5C%2C%27%28%7B%7Bx%7D_%7B0%7D%7D%29%3C0&id=tVMDu),此方法失效。

13.渐近线的求法

(1)水平渐近线 若3.CS229-Math - 图243%3Db#card=math&code=%5Cunderset%7Bx%5Cto%20%2B%5Cinfty%20%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2Cf%28x%29%3Db&id=RArTg),或3.CS229-Math - 图244%3Db#card=math&code=%5Cunderset%7Bx%5Cto%20-%5Cinfty%20%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2Cf%28x%29%3Db&id=E4avm),则

3.CS229-Math - 图245称为函数3.CS229-Math - 图246#card=math&code=y%3Df%28x%29&id=xLmMC)的水平渐近线。

(2)铅直渐近线 若3.CS229-Math - 图247,则

3.CS229-Math - 图248称为3.CS229-Math - 图249#card=math&code=y%3Df%28x%29&id=svsrH)的铅直渐近线。

(3)斜渐近线 若3.CS229-Math - 图250%7D%7Bx%7D%2C%5Cquad%20b%3D%5Cunderset%7Bx%5Cto%20%5Cinfty%20%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Bf(x)-ax%5D#card=math&code=a%3D%5Cunderset%7Bx%5Cto%20%5Cinfty%20%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Cfrac%7Bf%28x%29%7D%7Bx%7D%2C%5Cquad%20b%3D%5Cunderset%7Bx%5Cto%20%5Cinfty%20%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Bf%28x%29-ax%5D&id=gHQDV),则
3.CS229-Math - 图251称为3.CS229-Math - 图252#card=math&code=y%3Df%28x%29&id=WouxT)的斜渐近线。

14.函数凹凸性的判断

Th1: (凹凸性的判别定理)若在 I 上3.CS229-Math - 图253%3C0#card=math&code=f%27%27%28x%29%3C0&id=YooeE)(或3.CS229-Math - 图254%3E0#card=math&code=f%27%27%28x%29%3E0&id=aYd30)),则3.CS229-Math - 图255#card=math&code=f%28x%29&id=jxfcy)在 I 上是凸的(或凹的)。

Th2: (拐点的判别定理 1)若在3.CS229-Math - 图2563.CS229-Math - 图257%3D0#card=math&code=f%27%27%28x%29%3D0&id=LVOj5),(或3.CS229-Math - 图258#card=math&code=f%27%27%28x%29&id=N2XvP)不存在),当3.CS229-Math - 图259变动经过3.CS229-Math - 图260时,3.CS229-Math - 图261#card=math&code=f%27%27%28x%29&id=Bxlu5)变号,则3.CS229-Math - 图262)#card=math&code=%28%7B%7Bx%7D%7B0%7D%7D%2Cf%28%7B%7Bx%7D%7B0%7D%7D%29%29&id=uAjbj)为拐点。

Th3: (拐点的判别定理 2)设3.CS229-Math - 图263#card=math&code=f%28x%29&id=V20vp)在3.CS229-Math - 图264点的某邻域内有三阶导数,且3.CS229-Math - 图265%3D0#card=math&code=f%27%27%28x%29%3D0&id=BgnXy),3.CS229-Math - 图266%5Cne%200#card=math&code=f%27%27%27%28x%29%5Cne%200&id=LA9oI),则3.CS229-Math - 图267)#card=math&code=%28%7B%7Bx%7D%7B0%7D%7D%2Cf%28%7B%7Bx%7D%7B0%7D%7D%29%29&id=ft1Fd)为拐点。

15.弧微分

3.CS229-Math - 图268

16.曲率

曲线3.CS229-Math - 图269#card=math&code=y%3Df%28x%29&id=jt9FE)在点3.CS229-Math - 图270#card=math&code=%28x%2Cy%29&id=hh7rP)处的曲率3.CS229-Math - 图271%7D%5E%7B%5Ctfrac%7B3%7D%7B2%7D%7D%7D%7D#card=math&code=k%3D%5Cfrac%7B%5Cleft%7C%20y%27%27%20%5Cright%7C%7D%7B%7B%7B%281%2By%7B%7B%27%7D%5E%7B2%7D%7D%29%7D%5E%7B%5Ctfrac%7B3%7D%7B2%7D%7D%7D%7D&id=k8bKv)。
对于参数方程3.CS229-Math - 图272%20%5C%5C%20%20%26%20y%3D%5Cpsi%20(t)%20%5C%5C%20%5Cend%7Balign%7D%20%5Cright.%2C#card=math&code=%5Cleft%5C%7B%20%5Cbegin%7Balign%7D%20%20%26%20x%3D%5Cvarphi%20%28t%29%20%5C%5C%20%20%26%20y%3D%5Cpsi%20%28t%29%20%5C%5C%20%5Cend%7Balign%7D%20%5Cright.%2C&id=BJP5j)3.CS229-Math - 图273%5Cpsi%20’’(t)-%5Cvarphi%20’’(t)%5Cpsi%20’(t)%20%5Cright%7C%7D%7B%7B%7B%5B%5Cvarphi%20%7B%7B’%7D%5E%7B2%7D%7D(t)%2B%5Cpsi%20%7B%7B’%7D%5E%7B2%7D%7D(t)%5D%7D%5E%7B%5Ctfrac%7B3%7D%7B2%7D%7D%7D%7D#card=math&code=k%3D%5Cfrac%7B%5Cleft%7C%20%5Cvarphi%20%27%28t%29%5Cpsi%20%27%27%28t%29-%5Cvarphi%20%27%27%28t%29%5Cpsi%20%27%28t%29%20%5Cright%7C%7D%7B%7B%7B%5B%5Cvarphi%20%7B%7B%27%7D%5E%7B2%7D%7D%28t%29%2B%5Cpsi%20%7B%7B%27%7D%5E%7B2%7D%7D%28t%29%5D%7D%5E%7B%5Ctfrac%7B3%7D%7B2%7D%7D%7D%7D&id=DxKeG)。

17.曲率半径

曲线在点3.CS229-Math - 图274处的曲率3.CS229-Math - 图275#card=math&code=k%28k%5Cne%200%29&id=Zh2Yr)与曲线在点3.CS229-Math - 图276处的曲率半径$\rho 3.CS229-Math - 图277\rho =\frac{1}{k}$。

线性代数

行列式

1.行列式按行(列)展开定理

(1) 设3.CS229-Math - 图278%7Bn%20%5Ctimes%20n%7D#card=math&code=A%20%3D%20%28%20a%7B%7Bij%7D%7D%20%29%7Bn%20%5Ctimes%20n%7D&id=VJqLf),则:![](https://g.yuque.com/gr/latex?a%7Bi1%7DA%7Bj1%7D%20%2Ba%7Bi2%7DA%7Bj2%7D%20%2B%20%5Ccdots%20%2B%20a%7B%7Bin%7D%7DA%7B%7Bjn%7D%7D%20%3D%20%5Cbegin%7Bcases%7D%7CA%7C%2Ci%3Dj%5C%5C%200%2Ci%20%5Cneq%20j%5Cend%7Bcases%7D#card=math&code=a%7Bi1%7DA%7Bj1%7D%20%2Ba%7Bi2%7DA%7Bj2%7D%20%2B%20%5Ccdots%20%2B%20a%7B%7Bin%7D%7DA_%7B%7Bjn%7D%7D%20%3D%20%5Cbegin%7Bcases%7D%7CA%7C%2Ci%3Dj%5C%5C%200%2Ci%20%5Cneq%20j%5Cend%7Bcases%7D&id=LxlmR)

3.CS229-Math - 图2793.CS229-Math - 图280其中:3.CS229-Math - 图281%20%3D%20%7B(A%7B%7Bij%7D%7D)%7D%5E%7BT%7D#card=math&code=A%5E%7B%2A%7D%20%3D%20%5Cbegin%7Bpmatrix%7D%20A%7B11%7D%20%26%20A%7B12%7D%20%26%20%5Cldots%20%26%20A%7B1n%7D%20%5C%5C%20A%7B21%7D%20%26%20A%7B22%7D%20%26%20%5Cldots%20%26%20A%7B2n%7D%20%5C%5C%20%5Cldots%20%26%20%5Cldots%20%26%20%5Cldots%20%26%20%5Cldots%20%5C%5C%20A%7Bn1%7D%20%26%20A%7Bn2%7D%20%26%20%5Cldots%20%26%20A%7B%7Bnn%7D%7D%20%5C%5C%20%5Cend%7Bpmatrix%7D%20%3D%20%28A%7B%7Bji%7D%7D%29%20%3D%20%7B%28A%7B%7Bij%7D%7D%29%7D%5E%7BT%7D&id=GMCi8)

3.CS229-Math - 图282#card=math&code=D%7Bn%7D%20%3D%20%5Cbegin%7Bvmatrix%7D%201%20%26%201%20%26%20%5Cldots%20%26%201%20%5C%5C%20x%7B1%7D%20%26%20x%7B2%7D%20%26%20%5Cldots%20%26%20x%7Bn%7D%20%5C%5C%20%5Cldots%20%26%20%5Cldots%20%26%20%5Cldots%20%26%20%5Cldots%20%5C%5C%20x%7B1%7D%5E%7Bn%20-%201%7D%20%26%20x%7B2%7D%5E%7Bn%20-%201%7D%20%26%20%5Cldots%20%26%20x%7Bn%7D%5E%7Bn%20-%201%7D%20%5C%5C%20%5Cend%7Bvmatrix%7D%20%3D%20%5Cprod%7B1%20%5Cleq%20j%20%3C%20i%20%5Cleq%20n%7D%5E%7B%7D%5C%2C%28x%7Bi%7D%20-%20x%7Bj%7D%29&id=aqfpE)

(2) 设3.CS229-Math - 图2833.CS229-Math - 图284阶方阵,则3.CS229-Math - 图285,但3.CS229-Math - 图286不一定成立。

(3) 3.CS229-Math - 图287,3.CS229-Math - 图2883.CS229-Math - 图289阶方阵。

(4) 设3.CS229-Math - 图2903.CS229-Math - 图291阶方阵,3.CS229-Math - 图292(若3.CS229-Math - 图293可逆),3.CS229-Math - 图294

3.CS229-Math - 图295

(5) 3.CS229-Math - 图296
3.CS229-Math - 图297为方阵,但3.CS229-Math - 图298%7D%5E%7B%7Bmn%7D%7D%7CA%7C%7CB%7C#card=math&code=%5Cleft%7C%20%5Cbegin%7Bmatrix%7D%20%7BO%7D%20%26%20A%7Bm%20%5Ctimes%20m%7D%20%5C%5C%20%20B%7Bn%20%5Ctimes%20n%7D%20%26%20%7B%20O%7D%20%5C%5C%20%5Cend%7Bmatrix%7D%20%5Cright%7C%20%3D%20%28%7B-%201%29%7D%5E%7B%7Bmn%7D%7D%7CA%7C%7CB%7C&id=cCYb5) 。

(6) 范德蒙行列式3.CS229-Math - 图299#card=math&code=D%7Bn%7D%20%3D%20%5Cbegin%7Bvmatrix%7D%201%20%26%201%20%26%20%5Cldots%20%26%201%20%5C%5C%20x%7B1%7D%20%26%20x%7B2%7D%20%26%20%5Cldots%20%26%20x%7Bn%7D%20%5C%5C%20%5Cldots%20%26%20%5Cldots%20%26%20%5Cldots%20%26%20%5Cldots%20%5C%5C%20x%7B1%7D%5E%7Bn%20-%201%7D%20%26%20x%7B2%7D%5E%7Bn%201%7D%20%26%20%5Cldots%20%26%20x%7Bn%7D%5E%7Bn%20-%201%7D%20%5C%5C%20%5Cend%7Bvmatrix%7D%20%3D%20%20%5Cprod%7B1%20%5Cleq%20j%20%3C%20i%20%5Cleq%20n%7D%5E%7B%7D%5C%2C%28x%7Bi%7D%20-%20x%7Bj%7D%29&id=HExLM)

3.CS229-Math - 图3003.CS229-Math - 图301阶方阵,3.CS229-Math - 图302#card=math&code=%5Clambda%7Bi%7D%28i%20%3D%201%2C2%5Ccdots%2Cn%29&id=hJ4Kd)是3.CS229-Math - 图3033.CS229-Math - 图304个特征值,则
![](https://g.yuque.com/gr/latex?%7CA%7C%20%3D%20%5Cprod
%7Bi%20%3D%201%7D%5E%7Bn%7D%5Clambda%7Bi%7D#card=math&code=%7CA%7C%20%3D%20%5Cprod%7Bi%20%3D%201%7D%5E%7Bn%7D%5Clambda_%7Bi%7D&id=rJAPA)

矩阵

矩阵:3.CS229-Math - 图305个数3.CS229-Math - 图306排成3.CS229-Math - 图3073.CS229-Math - 图308列的表格3.CS229-Math - 图309 称为矩阵,简记为3.CS229-Math - 图310,或者3.CS229-Math - 图311%7Bm%20%5Ctimes%20n%7D#card=math&code=%5Cleft%28%20a%7B%7Bij%7D%7D%20%5Cright%29_%7Bm%20%5Ctimes%20n%7D&id=T4MXB) 。若3.CS229-Math - 图312,则称3.CS229-Math - 图3133.CS229-Math - 图314阶矩阵或3.CS229-Math - 图315阶方阵。

矩阵的线性运算

1.矩阵的加法

3.CS229-Math - 图316%2CB%20%3D%20(b%7B%7Bij%7D%7D)#card=math&code=A%20%3D%20%28a%7B%7Bij%7D%7D%29%2CB%20%3D%20%28b%7B%7Bij%7D%7D%29&id=S2d8a)是两个3.CS229-Math - 图317矩阵,则3.CS229-Math - 图318 矩阵![](https://g.yuque.com/gr/latex?C%20%3D%20c%7B%7Bij%7D%7D)%20%3D%20a%7B%7Bij%7D%7D%20%2B%20b%7B%7Bij%7D%7D#card=math&code=C%20%3D%20c%7B%7Bij%7D%7D%29%20%3D%20a%7B%7Bij%7D%7D%20%2B%20b_%7B%7Bij%7D%7D&id=aiTSu)称为矩阵3.CS229-Math - 图3193.CS229-Math - 图320的和,记为3.CS229-Math - 图321

2.矩阵的数乘

3.CS229-Math - 图322#card=math&code=A%20%3D%20%28a%7B%7Bij%7D%7D%29&id=sypq9)是3.CS229-Math - 图323矩阵,3.CS229-Math - 图324是一个常数,则3.CS229-Math - 图325矩阵![](https://g.yuque.com/gr/latex?(ka%7B%7Bij%7D%7D)#card=math&code=%28ka_%7B%7Bij%7D%7D%29&id=C8Qdg)称为数3.CS229-Math - 图326与矩阵3.CS229-Math - 图327的数乘,记为3.CS229-Math - 图328

3.矩阵的乘法

3.CS229-Math - 图329#card=math&code=A%20%3D%20%28a%7B%7Bij%7D%7D%29&id=XnyLS)是3.CS229-Math - 图330矩阵,![](https://g.yuque.com/gr/latex?B%20%3D%20(b%7B%7Bij%7D%7D)#card=math&code=B%20%3D%20%28b%7B%7Bij%7D%7D%29&id=ueMc8)是3.CS229-Math - 图331矩阵,那么3.CS229-Math - 图332矩阵![](https://g.yuque.com/gr/latex?C%20%3D%20(c%7B%7Bij%7D%7D)#card=math&code=C%20%3D%20%28c%7B%7Bij%7D%7D%29&id=cQf8Z),其中![](https://g.yuque.com/gr/latex?c%7B%7Bij%7D%7D%20%3D%20a%7Bi1%7Db%7B1j%7D%20%2B%20a%7Bi2%7Db%7B2j%7D%20%2B%20%5Ccdots%20%2B%20a%7B%7Bin%7D%7Db%7B%7Bnj%7D%7D%20%3D%20%5Csum%7Bk%20%3D1%7D%5E%7Bn%7D%7Ba%7B%7Bik%7D%7Db%7B%7Bkj%7D%7D%7D#card=math&code=c%7B%7Bij%7D%7D%20%3D%20a%7Bi1%7Db%7B1j%7D%20%2B%20a%7Bi2%7Db%7B2j%7D%20%2B%20%5Ccdots%20%2B%20a%7B%7Bin%7D%7Db%7B%7Bnj%7D%7D%20%3D%20%5Csum%7Bk%20%3D1%7D%5E%7Bn%7D%7Ba%7B%7Bik%7D%7Db_%7B%7Bkj%7D%7D%7D&id=XEMiO)称为3.CS229-Math - 图333的乘积,记为3.CS229-Math - 图334

4. 3.CS229-Math - 图3353.CS229-Math - 图3363.CS229-Math - 图337三者之间的关系

(1) 3.CS229-Math - 图338%7D%5E%7BT%7D%20%3D%20A%2C%7B(AB)%7D%5E%7BT%7D%20%3D%20B%5E%7BT%7DA%5E%7BT%7D%2C%7B(kA)%7D%5E%7BT%7D%20%3D%20kA%5E%7BT%7D%2C%7B(A%20%5Cpm%20B)%7D%5E%7BT%7D%20%3D%20A%5E%7BT%7D%20%5Cpm%20B%5E%7BT%7D#card=math&code=%7B%28A%5E%7BT%7D%29%7D%5E%7BT%7D%20%3D%20A%2C%7B%28AB%29%7D%5E%7BT%7D%20%3D%20B%5E%7BT%7DA%5E%7BT%7D%2C%7B%28kA%29%7D%5E%7BT%7D%20%3D%20kA%5E%7BT%7D%2C%7B%28A%20%5Cpm%20B%29%7D%5E%7BT%7D%20%3D%20A%5E%7BT%7D%20%5Cpm%20B%5E%7BT%7D&id=c0dcF)

(2) 3.CS229-Math - 图339%5E%7B-%201%7D%20%3D%20A%2C%5Cleft(%20%7BAB%7D%20%5Cright)%5E%7B-%201%7D%20%3D%20B%5E%7B-%201%7DA%5E%7B-%201%7D%2C%5Cleft(%20%7BkA%7D%20%5Cright)%5E%7B-%201%7D%20%3D%20%5Cfrac%7B1%7D%7Bk%7DA%5E%7B-%201%7D%2C#card=math&code=%5Cleft%28%20A%5E%7B-%201%7D%20%5Cright%29%5E%7B-%201%7D%20%3D%20A%2C%5Cleft%28%20%7BAB%7D%20%5Cright%29%5E%7B-%201%7D%20%3D%20B%5E%7B-%201%7DA%5E%7B-%201%7D%2C%5Cleft%28%20%7BkA%7D%20%5Cright%29%5E%7B-%201%7D%20%3D%20%5Cfrac%7B1%7D%7Bk%7DA%5E%7B-%201%7D%2C&id=BTdUf)

3.CS229-Math - 图340%7D%5E%7B-%201%7D%20%3D%20A%5E%7B-%201%7D%20%5Cpm%20B%5E%7B-%201%7D#card=math&code=%7B%28A%20%5Cpm%20B%29%7D%5E%7B-%201%7D%20%3D%20A%5E%7B-%201%7D%20%5Cpm%20B%5E%7B-%201%7D&id=EIz71)不一定成立。

(3) 3.CS229-Math - 图341%5E%7B%7D%20%3D%20%7CA%7C%5E%7Bn%20-%202%7D%5C%20A%5C%20%5C%20(n%20%5Cgeq%203)#card=math&code=%5Cleft%28%20A%5E%7B%2A%7D%20%5Cright%29%5E%7B%2A%7D%20%3D%20%7CA%7C%5E%7Bn%20-%202%7D%5C%20A%5C%20%5C%20%28n%20%5Cgeq%203%29&id=sSo9F),3.CS229-Math - 图342%5E%7B%7D%20%3D%20B%5E%7B%7DA%5E%7B%7D%2C#card=math&code=%5Cleft%28%7BAB%7D%20%5Cright%29%5E%7B%2A%7D%20%3D%20B%5E%7B%2A%7DA%5E%7B%2A%7D%2C&id=o9SLu) 3.CS229-Math - 图343%5E%7B%7D%20%3D%20k%5E%7Bn%20-1%7DA%5E%7B%7D%7B%5C%20%5C%20%7D%5Cleft(%20n%20%5Cgeq%202%20%5Cright)#card=math&code=%5Cleft%28%20%7BkA%7D%20%5Cright%29%5E%7B%2A%7D%20%3D%20k%5E%7Bn%20-1%7DA%5E%7B%2A%7D%7B%5C%20%5C%20%7D%5Cleft%28%20n%20%5Cgeq%202%20%5Cright%29&id=thLcV)

3.CS229-Math - 图344%5E%7B%7D%20%3D%20A%5E%7B%7D%20%5Cpm%20B%5E%7B*%7D#card=math&code=%5Cleft%28%20A%20%5Cpm%20B%20%5Cright%29%5E%7B%2A%7D%20%3D%20A%5E%7B%2A%7D%20%5Cpm%20B%5E%7B%2A%7D&id=pSbPq)不一定成立。

(4) 3.CS229-Math - 图345%7D%5E%7BT%7D%20%3D%20%7B(A%5E%7BT%7D)%7D%5E%7B-%201%7D%2C%5C%20%5Cleft(%20A%5E%7B-%201%7D%20%5Cright)%5E%7B%7D%20%3D%7B(AA%5E%7B%7D)%7D%5E%7B-%201%7D%2C%7B(A%5E%7B%7D)%7D%5E%7BT%7D%20%3D%20%5Cleft(%20A%5E%7BT%7D%20%5Cright)%5E%7B%7D#card=math&code=%7B%28A%5E%7B-%201%7D%29%7D%5E%7BT%7D%20%3D%20%7B%28A%5E%7BT%7D%29%7D%5E%7B-%201%7D%2C%5C%20%5Cleft%28%20A%5E%7B-%201%7D%20%5Cright%29%5E%7B%2A%7D%20%3D%7B%28AA%5E%7B%2A%7D%29%7D%5E%7B-%201%7D%2C%7B%28A%5E%7B%2A%7D%29%7D%5E%7BT%7D%20%3D%20%5Cleft%28%20A%5E%7BT%7D%20%5Cright%29%5E%7B%2A%7D&id=TWxam)

5.有关3.CS229-Math - 图346的结论

(1) 3.CS229-Math - 图347

(2) 3.CS229-Math - 图348%2C%5C%20%5C%20%5C%20%5C%20%7B(kA)%7D%5E%7B%7D%20%3D%20k%5E%7Bn%20-1%7DA%5E%7B%7D%2C%7B%7B%5C%20%5C%20%7D%5Cleft(%20A%5E%7B%7D%20%5Cright)%7D%5E%7B%7D%20%3D%20%7CA%7C%5E%7Bn%20-%202%7DA(n%20%5Cgeq%203)#card=math&code=%7CA%5E%7B%2A%7D%7C%20%3D%20%7CA%7C%5E%7Bn%20-%201%7D%5C%20%28n%20%5Cgeq%202%29%2C%5C%20%5C%20%5C%20%5C%20%7B%28kA%29%7D%5E%7B%2A%7D%20%3D%20k%5E%7Bn%20-1%7DA%5E%7B%2A%7D%2C%7B%7B%5C%20%5C%20%7D%5Cleft%28%20A%5E%7B%2A%7D%20%5Cright%29%7D%5E%7B%2A%7D%20%3D%20%7CA%7C%5E%7Bn%20-%202%7DA%28n%20%5Cgeq%203%29&id=XeOQy)

(3) 若3.CS229-Math - 图349可逆,则3.CS229-Math - 图350%7D%5E%7B*%7D%20%3D%20%5Cfrac%7B1%7D%7B%7CA%7C%7DA#card=math&code=A%5E%7B%2A%7D%20%3D%20%7CA%7CA%5E%7B-%201%7D%2C%7B%28A%5E%7B%2A%7D%29%7D%5E%7B%2A%7D%20%3D%20%5Cfrac%7B1%7D%7B%7CA%7C%7DA&id=ajaJj)

(4) 若3.CS229-Math - 图3513.CS229-Math - 图352阶方阵,则:

3.CS229-Math - 图353%3D%5Cbegin%7Bcases%7Dn%2C%5Cquad%20r(A)%3Dn%5C%5C%201%2C%5Cquad%20r(A)%3Dn-1%5C%5C%200%2C%5Cquad%20r(A)%3Cn-1%5Cend%7Bcases%7D#card=math&code=r%28A%5E%2A%29%3D%5Cbegin%7Bcases%7Dn%2C%5Cquad%20r%28A%29%3Dn%5C%5C%201%2C%5Cquad%20r%28A%29%3Dn-1%5C%5C%200%2C%5Cquad%20r%28A%29%3Cn-1%5Cend%7Bcases%7D&id=ORmF3)

6.有关3.CS229-Math - 图354的结论

3.CS229-Math - 图355可逆3.CS229-Math - 图356%20%3D%20n%3B#card=math&code=%5CLeftrightarrow%20AB%20%3D%20E%3B%20%5CLeftrightarrow%20%7CA%7C%20%5Cneq%200%3B%20%5CLeftrightarrow%20r%28A%29%20%3D%20n%3B&id=NTRJu)

3.CS229-Math - 图357可以表示为初等矩阵的乘积;3.CS229-Math - 图358

7.有关矩阵秩的结论

(1) 秩3.CS229-Math - 图359#card=math&code=r%28A%29&id=jAxnK)=行秩=列秩;

(2) 3.CS229-Math - 图360%20%5Cleq%20%5Cmin(m%2Cn)%3B#card=math&code=r%28A_%7Bm%20%5Ctimes%20n%7D%29%20%5Cleq%20%5Cmin%28m%2Cn%29%3B&id=a7tqW)

(3) 3.CS229-Math - 图361%20%5Cgeq%201#card=math&code=A%20%5Cneq%200%20%5CRightarrow%20r%28A%29%20%5Cgeq%201&id=M4vQy);

(4) 3.CS229-Math - 图362%20%5Cleq%20r(A)%20%2B%20r(B)%3B#card=math&code=r%28A%20%5Cpm%20B%29%20%5Cleq%20r%28A%29%20%2B%20r%28B%29%3B&id=IML8S)

(5) 初等变换不改变矩阵的秩

(6) 3.CS229-Math - 图363%20%2B%20r(B)%20-%20n%20%5Cleq%20r(AB)%20%5Cleq%20%5Cmin(r(A)%2Cr(B))%2C#card=math&code=r%28A%29%20%2B%20r%28B%29%20-%20n%20%5Cleq%20r%28AB%29%20%5Cleq%20%5Cmin%28r%28A%29%2Cr%28B%29%29%2C&id=UH2nE)特别若3.CS229-Math - 图364
则:3.CS229-Math - 图365%20%2B%20r(B)%20%5Cleq%20n#card=math&code=r%28A%29%20%2B%20r%28B%29%20%5Cleq%20n&id=Qo1DD)

(7) 若3.CS229-Math - 图366存在3.CS229-Math - 图367%20%3D%20r(B)%3B#card=math&code=%5CRightarrow%20r%28AB%29%20%3D%20r%28B%29%3B&id=qeu14) 若3.CS229-Math - 图368存在
3.CS229-Math - 图369%20%3D%20r(A)%3B#card=math&code=%5CRightarrow%20r%28AB%29%20%3D%20r%28A%29%3B&id=L0xzZ)

3.CS229-Math - 图370%20%3D%20n%20%5CRightarrow%20r(AB)%20%3D%20r(B)%3B#card=math&code=r%28A%7Bm%20%5Ctimes%20n%7D%29%20%3D%20n%20%5CRightarrow%20r%28AB%29%20%3D%20r%28B%29%3B&id=Kp2Gm) 若![](https://g.yuque.com/gr/latex?r(A%7Bm%20%5Ctimes%20s%7D)%20%3D%20n%5CRightarrow%20r(AB)%20%3D%20r%5Cleft(%20A%20%5Cright)#card=math&code=r%28A_%7Bm%20%5Ctimes%20s%7D%29%20%3D%20n%5CRightarrow%20r%28AB%29%20%3D%20r%5Cleft%28%20A%20%5Cright%29&id=sgoji)。

(8) 3.CS229-Math - 图371%20%3D%20n%20%5CLeftrightarrow%20Ax%20%3D%200#card=math&code=r%28A_%7Bm%20%5Ctimes%20s%7D%29%20%3D%20n%20%5CLeftrightarrow%20Ax%20%3D%200&id=JxqrO)只有零解

8.分块求逆公式

3.CS229-Math - 图3723.CS229-Math - 图373

3.CS229-Math - 图3743.CS229-Math - 图375

这里3.CS229-Math - 图3763.CS229-Math - 图377均为可逆方阵。

向量

1.有关向量组的线性表示

(1)3.CS229-Math - 图378线性相关3.CS229-Math - 图379至少有一个向量可以用其余向量线性表示。

(2)3.CS229-Math - 图380线性无关,3.CS229-Math - 图3813.CS229-Math - 图382线性相关3.CS229-Math - 图383可以由3.CS229-Math - 图384唯一线性表示。

(3) 3.CS229-Math - 图385可以由3.CS229-Math - 图386线性表示
3.CS229-Math - 图387%20%3Dr(%5Calpha%7B1%7D%2C%5Calpha%7B2%7D%2C%5Ccdots%2C%5Calpha%7Bs%7D%2C%5Cbeta)#card=math&code=%5CLeftrightarrow%20r%28%5Calpha%7B1%7D%2C%5Calpha%7B2%7D%2C%5Ccdots%2C%5Calpha%7Bs%7D%29%20%3Dr%28%5Calpha%7B1%7D%2C%5Calpha%7B2%7D%2C%5Ccdots%2C%5Calpha_%7Bs%7D%2C%5Cbeta%29&id=CtPAE) 。

2.有关向量组的线性相关性

(1)部分相关,整体相关;整体无关,部分无关.

(2) ① 3.CS229-Math - 图3883.CS229-Math - 图389维向量
3.CS229-Math - 图390线性无关3.CS229-Math - 图3913.CS229-Math - 图3923.CS229-Math - 图393维向量3.CS229-Math - 图394线性相关
3.CS229-Math - 图395

3.CS229-Math - 图3963.CS229-Math - 图397维向量线性相关。

③ 若3.CS229-Math - 图398线性无关,则添加分量后仍线性无关;或一组向量线性相关,去掉某些分量后仍线性相关。

3.有关向量组的线性表示

(1) 3.CS229-Math - 图399线性相关3.CS229-Math - 图400至少有一个向量可以用其余向量线性表示。

(2) 3.CS229-Math - 图401线性无关,3.CS229-Math - 图4023.CS229-Math - 图403线性相关3.CS229-Math - 图404 可以由3.CS229-Math - 图405唯一线性表示。

(3) 3.CS229-Math - 图406可以由3.CS229-Math - 图407线性表示
3.CS229-Math - 图408%20%3Dr(%5Calpha%7B1%7D%2C%5Calpha%7B2%7D%2C%5Ccdots%2C%5Calpha%7Bs%7D%2C%5Cbeta)#card=math&code=%5CLeftrightarrow%20r%28%5Calpha%7B1%7D%2C%5Calpha%7B2%7D%2C%5Ccdots%2C%5Calpha%7Bs%7D%29%20%3Dr%28%5Calpha%7B1%7D%2C%5Calpha%7B2%7D%2C%5Ccdots%2C%5Calpha_%7Bs%7D%2C%5Cbeta%29&id=OE7sS)

4.向量组的秩与矩阵的秩之间的关系

3.CS229-Math - 图409%20%3Dr#card=math&code=r%28A_%7Bm%20%5Ctimes%20n%7D%29%20%3Dr&id=A5vME),则3.CS229-Math - 图410的秩3.CS229-Math - 图411#card=math&code=r%28A%29&id=jt9TR)与3.CS229-Math - 图412的行列向量组的线性相关性关系为:

(1) 若3.CS229-Math - 图413%20%3D%20r%20%3D%20m#card=math&code=r%28A_%7Bm%20%5Ctimes%20n%7D%29%20%3D%20r%20%3D%20m&id=hzvL9),则3.CS229-Math - 图414的行向量组线性无关。

(2) 若3.CS229-Math - 图415%20%3D%20r%20%3C%20m#card=math&code=r%28A_%7Bm%20%5Ctimes%20n%7D%29%20%3D%20r%20%3C%20m&id=YPsDX),则3.CS229-Math - 图416的行向量组线性相关。

(3) 若3.CS229-Math - 图417%20%3D%20r%20%3D%20n#card=math&code=r%28A_%7Bm%20%5Ctimes%20n%7D%29%20%3D%20r%20%3D%20n&id=XNyMX),则3.CS229-Math - 图418的列向量组线性无关。

(4) 若3.CS229-Math - 图419%20%3D%20r%20%3C%20n#card=math&code=r%28A_%7Bm%20%5Ctimes%20n%7D%29%20%3D%20r%20%3C%20n&id=sKD3T),则3.CS229-Math - 图420的列向量组线性相关。

5.3.CS229-Math - 图421维向量空间的基变换公式及过渡矩阵

3.CS229-Math - 图4223.CS229-Math - 图423是向量空间3.CS229-Math - 图424的两组基,则基变换公式为:

3.CS229-Math - 图425%20%3D%20(%5Calpha%7B1%7D%2C%5Calpha%7B2%7D%2C%5Ccdots%2C%5Calpha%7Bn%7D)%5Cbegin%7Bbmatrix%7D%20%20c%7B11%7D%26%20c%7B12%7D%26%20%5Ccdots%20%26%20c%7B1n%7D%20%5C%5C%20%20c%7B21%7D%26%20c%7B22%7D%26%5Ccdots%20%26%20c%7B2n%7D%20%5C%5C%20%5Ccdots%20%26%20%5Ccdots%20%26%20%5Ccdots%20%26%20%5Ccdots%20%5C%5C%20%20c%7Bn1%7D%26%20c%7Bn2%7D%20%26%20%5Ccdots%20%26%20c%7B%7Bnn%7D%7D%20%5C%5C%5Cend%7Bbmatrix%7D%20%3D%20(%5Calpha%7B1%7D%2C%5Calpha%7B2%7D%2C%5Ccdots%2C%5Calpha%7Bn%7D)C#card=math&code=%28%5Cbeta%7B1%7D%2C%5Cbeta%7B2%7D%2C%5Ccdots%2C%5Cbeta%7Bn%7D%29%20%3D%20%28%5Calpha%7B1%7D%2C%5Calpha%7B2%7D%2C%5Ccdots%2C%5Calpha%7Bn%7D%29%5Cbegin%7Bbmatrix%7D%20%20c%7B11%7D%26%20c%7B12%7D%26%20%5Ccdots%20%26%20c%7B1n%7D%20%5C%5C%20%20c%7B21%7D%26%20c%7B22%7D%26%5Ccdots%20%26%20c%7B2n%7D%20%5C%5C%20%5Ccdots%20%26%20%5Ccdots%20%26%20%5Ccdots%20%26%20%5Ccdots%20%5C%5C%20%20c%7Bn1%7D%26%20c%7Bn2%7D%20%26%20%5Ccdots%20%26%20c%7B%7Bnn%7D%7D%20%5C%5C%5Cend%7Bbmatrix%7D%20%3D%20%28%5Calpha%7B1%7D%2C%5Calpha%7B2%7D%2C%5Ccdots%2C%5Calpha_%7Bn%7D%29C&id=rTb88)

其中3.CS229-Math - 图426是可逆矩阵,称为由基3.CS229-Math - 图427到基3.CS229-Math - 图428的过渡矩阵。

6.坐标变换公式

若向量3.CS229-Math - 图429在基3.CS229-Math - 图430与基3.CS229-Math - 图431的坐标分别是
3.CS229-Math - 图432%7D%5E%7BT%7D#card=math&code=X%20%3D%20%7B%28x%7B1%7D%2Cx%7B2%7D%2C%5Ccdots%2Cx_%7Bn%7D%29%7D%5E%7BT%7D&id=s8fFB),

3.CS229-Math - 图433%5E%7BT%7D#card=math&code=Y%20%3D%20%5Cleft%28%20y%7B1%7D%2Cy%7B2%7D%2C%5Ccdots%2Cy%7Bn%7D%20%5Cright%29%5E%7BT%7D&id=zFObK) 即: ![](https://g.yuque.com/gr/latex?%5Cgamma%20%3Dx%7B1%7D%5Calpha%7B1%7D%20%2B%20x%7B2%7D%5Calpha%7B2%7D%20%2B%20%5Ccdots%20%2B%20x%7Bn%7D%5Calpha%7Bn%7D%20%3D%20y%7B1%7D%5Cbeta%7B1%7D%20%2By%7B2%7D%5Cbeta%7B2%7D%20%2B%20%5Ccdots%20%2B%20y%7Bn%7D%5Cbeta%7Bn%7D#card=math&code=%5Cgamma%20%3Dx%7B1%7D%5Calpha%7B1%7D%20%2B%20x%7B2%7D%5Calpha%7B2%7D%20%2B%20%5Ccdots%20%2B%20x%7Bn%7D%5Calpha%7Bn%7D%20%3D%20y%7B1%7D%5Cbeta%7B1%7D%20%2By%7B2%7D%5Cbeta%7B2%7D%20%2B%20%5Ccdots%20%2B%20y%7Bn%7D%5Cbeta%7Bn%7D&id=JHzdA),则向量坐标变换公式为3.CS229-Math - 图4343.CS229-Math - 图435,其中3.CS229-Math - 图436是从基![](https://g.yuque.com/gr/latex?%5Calpha%7B1%7D%2C%5Calpha%7B2%7D%2C%5Ccdots%2C%5Calpha%7Bn%7D#card=math&code=%5Calpha%7B1%7D%2C%5Calpha%7B2%7D%2C%5Ccdots%2C%5Calpha%7Bn%7D&id=cOOvM)到基![](https://g.yuque.com/gr/latex?%5Cbeta%7B1%7D%2C%5Cbeta%7B2%7D%2C%5Ccdots%2C%5Cbeta%7Bn%7D#card=math&code=%5Cbeta%7B1%7D%2C%5Cbeta%7B2%7D%2C%5Ccdots%2C%5Cbeta_%7Bn%7D&id=fa3CO)的过渡矩阵。

7.向量的内积

3.CS229-Math - 图437%20%3D%20a%7B1%7Db%7B1%7D%20%2B%20a%7B2%7Db%7B2%7D%20%2B%20%5Ccdots%20%2B%20a%7Bn%7Db%7Bn%7D%20%3D%20%5Calpha%5E%7BT%7D%5Cbeta%20%3D%20%5Cbeta%5E%7BT%7D%5Calpha#card=math&code=%28%5Calpha%2C%5Cbeta%29%20%3D%20a%7B1%7Db%7B1%7D%20%2B%20a%7B2%7Db%7B2%7D%20%2B%20%5Ccdots%20%2B%20a%7Bn%7Db%7Bn%7D%20%3D%20%5Calpha%5E%7BT%7D%5Cbeta%20%3D%20%5Cbeta%5E%7BT%7D%5Calpha&id=ylfHi)

8.Schmidt 正交化

3.CS229-Math - 图438线性无关,则可构造3.CS229-Math - 图439使其两两正交,且3.CS229-Math - 图440仅是3.CS229-Math - 图441的线性组合3.CS229-Math - 图442#card=math&code=%28i%3D%201%2C2%2C%5Ccdots%2Cn%29&id=Ahttb),再把3.CS229-Math - 图443单位化,记3.CS229-Math - 图444,则3.CS229-Math - 图445是规范正交向量组。其中
3.CS229-Math - 图4463.CS229-Math - 图447%7D%7B(%5Cbeta%7B1%7D%2C%5Cbeta%7B1%7D)%7D%5Cbeta%7B1%7D#card=math&code=%5Cbeta%7B2%7D%20%3D%20%5Calpha%7B2%7D%20-%5Cfrac%7B%28%5Calpha%7B2%7D%2C%5Cbeta%7B1%7D%29%7D%7B%28%5Cbeta%7B1%7D%2C%5Cbeta%7B1%7D%29%7D%5Cbeta%7B1%7D&id=uDAH0) , 3.CS229-Math - 图448%7D%7B(%5Cbeta%7B1%7D%2C%5Cbeta%7B1%7D)%7D%5Cbeta%7B1%7D%20-%5Cfrac%7B(%5Calpha%7B3%7D%2C%5Cbeta%7B2%7D)%7D%7B(%5Cbeta%7B2%7D%2C%5Cbeta%7B2%7D)%7D%5Cbeta%7B2%7D#card=math&code=%5Cbeta%7B3%7D%20%3D%5Calpha%7B3%7D%20-%20%5Cfrac%7B%28%5Calpha%7B3%7D%2C%5Cbeta%7B1%7D%29%7D%7B%28%5Cbeta%7B1%7D%2C%5Cbeta%7B1%7D%29%7D%5Cbeta%7B1%7D%20-%5Cfrac%7B%28%5Calpha%7B3%7D%2C%5Cbeta%7B2%7D%29%7D%7B%28%5Cbeta%7B2%7D%2C%5Cbeta%7B2%7D%29%7D%5Cbeta%7B2%7D&id=WbCCt) ,

…………

3.CS229-Math - 图449%7D%7B(%5Cbeta%7B1%7D%2C%5Cbeta%7B1%7D)%7D%5Cbeta%7B1%7D%20-%20%5Cfrac%7B(%5Calpha%7Bs%7D%2C%5Cbeta%7B2%7D)%7D%7B(%5Cbeta%7B2%7D%2C%5Cbeta%7B2%7D)%7D%5Cbeta%7B2%7D%20-%20%5Ccdots%20-%20%5Cfrac%7B(%5Calpha%7Bs%7D%2C%5Cbeta%7Bs%20-%201%7D)%7D%7B(%5Cbeta%7Bs%20-%201%7D%2C%5Cbeta%7Bs%20-%201%7D)%7D%5Cbeta%7Bs%20-%201%7D#card=math&code=%5Cbeta%7Bs%7D%20%3D%20%5Calpha%7Bs%7D%20-%20%5Cfrac%7B%28%5Calpha%7Bs%7D%2C%5Cbeta%7B1%7D%29%7D%7B%28%5Cbeta%7B1%7D%2C%5Cbeta%7B1%7D%29%7D%5Cbeta%7B1%7D%20-%20%5Cfrac%7B%28%5Calpha%7Bs%7D%2C%5Cbeta%7B2%7D%29%7D%7B%28%5Cbeta%7B2%7D%2C%5Cbeta%7B2%7D%29%7D%5Cbeta%7B2%7D%20-%20%5Ccdots%20-%20%5Cfrac%7B%28%5Calpha%7Bs%7D%2C%5Cbeta%7Bs%20-%201%7D%29%7D%7B%28%5Cbeta%7Bs%20-%201%7D%2C%5Cbeta%7Bs%20-%201%7D%29%7D%5Cbeta%7Bs%20-%201%7D&id=iv9QW)

9.正交基及规范正交基

向量空间一组基中的向量如果两两正交,就称为正交基;若正交基中每个向量都是单位向量,就称其为规范正交基。

线性方程组

1.克莱姆法则

线性方程组3.CS229-Math - 图450,如果系数行列式3.CS229-Math - 图451,则方程组有唯一解,3.CS229-Math - 图452,其中3.CS229-Math - 图453是把3.CS229-Math - 图454中第3.CS229-Math - 图455列元素换成方程组右端的常数列所得的行列式。

2. 3.CS229-Math - 图456阶矩阵3.CS229-Math - 图457可逆3.CS229-Math - 图458只有零解。3.CS229-Math - 图459总有唯一解,一般地,3.CS229-Math - 图460%20%3D%20n%20%5CLeftrightarrow%20Ax%3D%200#card=math&code=r%28A_%7Bm%20%5Ctimes%20n%7D%29%20%3D%20n%20%5CLeftrightarrow%20Ax%3D%200&id=unNyM)只有零解。

3.非奇次线性方程组有解的充分必要条件,线性方程组解的性质和解的结构

(1) 设3.CS229-Math - 图4613.CS229-Math - 图462矩阵,若3.CS229-Math - 图463%20%3D%20m#card=math&code=r%28A_%7Bm%20%5Ctimes%20n%7D%29%20%3D%20m&id=XiA0O),则对3.CS229-Math - 图464而言必有3.CS229-Math - 图465%20%3D%20r(A%20%5Cvdots%20b)%20%3D%20m#card=math&code=r%28A%29%20%3D%20r%28A%20%5Cvdots%20b%29%20%3D%20m&id=LgRMo),从而3.CS229-Math - 图466有解。

(2) 设3.CS229-Math - 图4673.CS229-Math - 图468的解,则3.CS229-Math - 图4693.CS229-Math - 图470时仍为3.CS229-Math - 图471的解;但当3.CS229-Math - 图472时,则为3.CS229-Math - 图473的解。特别3.CS229-Math - 图4743.CS229-Math - 图475的解;3.CS229-Math - 图476#card=math&code=2x%7B3%7D%20-%20%28x%7B1%7D%20%2Bx_%7B2%7D%29&id=vpQ7W)为3.CS229-Math - 图477的解。

(3) 非齐次线性方程组3.CS229-Math - 图478无解3.CS229-Math - 图479%20%2B%201%20%3Dr(%5Coverline%7BA%7D)%20%5CLeftrightarrow%20b#card=math&code=%5CLeftrightarrow%20r%28A%29%20%2B%201%20%3Dr%28%5Coverline%7BA%7D%29%20%5CLeftrightarrow%20b&id=z4FhC)不能由3.CS229-Math - 图480的列向量3.CS229-Math - 图481线性表示。

4.奇次线性方程组的基础解系和通解,解空间,非奇次线性方程组的通解

(1) 齐次方程组3.CS229-Math - 图482恒有解(必有零解)。当有非零解时,由于解向量的任意线性组合仍是该齐次方程组的解向量,因此3.CS229-Math - 图483的全体解向量构成一个向量空间,称为该方程组的解空间,解空间的维数是3.CS229-Math - 图484#card=math&code=n%20-%20r%28A%29&id=I5S56),解空间的一组基称为齐次方程组的基础解系。

(2) 3.CS229-Math - 图4853.CS229-Math - 图486的基础解系,即:

  1. 3.CS229-Math - 图4873.CS229-Math - 图488的解;
  2. 3.CS229-Math - 图489线性无关;
  3. 3.CS229-Math - 图490的任一解都可以由3.CS229-Math - 图491线性表出.
    3.CS229-Math - 图4923.CS229-Math - 图493的通解,其中3.CS229-Math - 图494是任意常数。

矩阵的特征值和特征向量

1.矩阵的特征值和特征向量的概念及性质

(1) 设3.CS229-Math - 图4953.CS229-Math - 图496的一个特征值,则 3.CS229-Math - 图497%2CA%5E%7BT%7D%2CA%5E%7B-%201%7D%2CA%5E%7B*%7D#card=math&code=%7BkA%7D%2C%7BaA%7D%20%2B%20%7BbE%7D%2CA%5E%7B2%7D%2CA%5E%7Bm%7D%2Cf%28A%29%2CA%5E%7BT%7D%2CA%5E%7B-%201%7D%2CA%5E%7B%2A%7D&id=iWdUQ)有一个特征值分别为
3.CS229-Math - 图498%2C%5Clambda%2C%5Clambda%5E%7B-%201%7D%2C%5Cfrac%7B%7CA%7C%7D%7B%5Clambda%7D%2C#card=math&code=%7Bk%CE%BB%7D%2C%7Ba%CE%BB%7D%20%2B%20b%2C%5Clambda%5E%7B2%7D%2C%5Clambda%5E%7Bm%7D%2Cf%28%5Clambda%29%2C%5Clambda%2C%5Clambda%5E%7B-%201%7D%2C%5Cfrac%7B%7CA%7C%7D%7B%5Clambda%7D%2C&id=BQD8u)且对应特征向量相同(3.CS229-Math - 图499 例外)。

(2)若3.CS229-Math - 图5003.CS229-Math - 图5013.CS229-Math - 图502个特征值,则3.CS229-Math - 图503 ,从而3.CS229-Math - 图504没有特征值。

(3)设3.CS229-Math - 图5053.CS229-Math - 图5063.CS229-Math - 图507个特征值,对应特征向量为3.CS229-Math - 图508

若: 3.CS229-Math - 图509 ,

则: 3.CS229-Math - 图510

2.相似变换、相似矩阵的概念及性质

(1) 若3.CS229-Math - 图511,则

  1. 3.CS229-Math - 图512
  2. 3.CS229-Math - 图513%20%3D%20r(B)#card=math&code=%7CA%7C%20%3D%20%7CB%7C%2C%5Csum%7Bi%20%3D%201%7D%5E%7Bn%7DA%7B%7Bii%7D%7D%20%3D%20%5Csum%7Bi%20%3D1%7D%5E%7Bn%7Db%7B%7Bii%7D%7D%2Cr%28A%29%20%3D%20r%28B%29&id=D1TOC)
  3. 3.CS229-Math - 图514,对3.CS229-Math - 图515成立

3.矩阵可相似对角化的充分必要条件

(1)设3.CS229-Math - 图5163.CS229-Math - 图517阶方阵,则3.CS229-Math - 图518可对角化3.CS229-Math - 图519对每个3.CS229-Math - 图520重根特征值3.CS229-Math - 图521,有3.CS229-Math - 图522%20%3D%20k%7Bi%7D#card=math&code=n-r%28%5Clambda%7Bi%7DE%20-%20A%29%20%3D%20k_%7Bi%7D&id=SbSgs)

(2) 设3.CS229-Math - 图523可对角化,则由3.CS229-Math - 图5243.CS229-Math - 图525,从而3.CS229-Math - 图526

(3) 重要结论

  1. 3.CS229-Math - 图527,则3.CS229-Math - 图528.
  2. 3.CS229-Math - 图529,则3.CS229-Math - 图530%20%5Csim%20f(B)%2C%5Cleft%7C%20f(A)%20%5Cright%7C%20%5Csim%20%5Cleft%7C%20f(B)%5Cright%7C#card=math&code=f%28A%29%20%5Csim%20f%28B%29%2C%5Cleft%7C%20f%28A%29%20%5Cright%7C%20%5Csim%20%5Cleft%7C%20f%28B%29%5Cright%7C&id=fWlaG),其中3.CS229-Math - 图531#card=math&code=f%28A%29&id=arnCx)为关于3.CS229-Math - 图532阶方阵3.CS229-Math - 图533的多项式。
  3. 3.CS229-Math - 图534为可对角化矩阵,则其非零特征值的个数(重根重复计算)=秩(3.CS229-Math - 图535)

4.实对称矩阵的特征值、特征向量及相似对角阵

(1)相似矩阵:设3.CS229-Math - 图536为两个3.CS229-Math - 图537阶方阵,如果存在一个可逆矩阵3.CS229-Math - 图538,使得3.CS229-Math - 图539成立,则称矩阵3.CS229-Math - 图5403.CS229-Math - 图541相似,记为3.CS229-Math - 图542

(2)相似矩阵的性质:如果3.CS229-Math - 图543则有:

  1. 3.CS229-Math - 图544
  2. 3.CS229-Math - 图545 (若3.CS229-Math - 图5463.CS229-Math - 图547均可逆)
  3. 3.CS229-Math - 图5483.CS229-Math - 图549为正整数)
  4. 3.CS229-Math - 图550,从而3.CS229-Math - 图551
    有相同的特征值
  5. 3.CS229-Math - 图552,从而3.CS229-Math - 图553同时可逆或者不可逆
  6. 3.CS229-Math - 图554%20%3D#card=math&code=%5Cleft%28%20A%20%5Cright%29%20%3D&id=CjyZg)秩3.CS229-Math - 图555%2C%5Cleft%7C%20%7B%CE%BBE%7D%20-%20A%20%5Cright%7C%20%3D%5Cleft%7C%20%7B%CE%BBE%7D%20-%20B%20%5Cright%7C#card=math&code=%5Cleft%28%20B%20%5Cright%29%2C%5Cleft%7C%20%7B%CE%BBE%7D%20-%20A%20%5Cright%7C%20%3D%5Cleft%7C%20%7B%CE%BBE%7D%20-%20B%20%5Cright%7C&id=KE4Jv),3.CS229-Math - 图556不一定相似

二次型

1.3.CS229-Math - 图557个变量3.CS229-Math - 图558的二次齐次函数

3.CS229-Math - 图559%20%3D%20%5Csum%7Bi%20%3D%201%7D%5E%7Bn%7D%7B%5Csum%7Bj%20%3D1%7D%5E%7Bn%7D%7Ba%7B%7Bij%7D%7Dx%7Bi%7Dy%7Bj%7D%7D%7D#card=math&code=f%28x%7B1%7D%2Cx%7B2%7D%2C%5Ccdots%2Cx%7Bn%7D%29%20%3D%20%5Csum%7Bi%20%3D%201%7D%5E%7Bn%7D%7B%5Csum%7Bj%20%3D1%7D%5E%7Bn%7D%7Ba%7B%7Bij%7D%7Dx%7Bi%7Dy%7Bj%7D%7D%7D&id=u5GDs),其中![](https://g.yuque.com/gr/latex?a%7B%7Bij%7D%7D%20%3D%20a%7B%7Bji%7D%7D(i%2Cj%20%3D1%2C2%2C%5Ccdots%2Cn)#card=math&code=a%7B%7Bij%7D%7D%20%3D%20a%7B%7Bji%7D%7D%28i%2Cj%20%3D1%2C2%2C%5Ccdots%2Cn%29&id=D6eJY),称为3.CS229-Math - 图560元二次型,简称二次型. 若令![](https://g.yuque.com/gr/latex?x%20%3D%20%5C%20%5Cbegin%7Bbmatrix%7Dx%7B1%7D%20%5C%5C%20x%7B1%7D%20%5C%5C%20%20%5Cvdots%20%5C%5C%20x%7Bn%7D%20%5C%5C%20%5Cend%7Bbmatrix%7D%2CA%20%3D%20%5Cbegin%7Bbmatrix%7D%20%20a%7B11%7D%26%20a%7B12%7D%26%20%5Ccdots%20%26%20a%7B1n%7D%20%5C%5C%20%20a%7B21%7D%26%20a%7B22%7D%26%20%5Ccdots%20%26%20a%7B2n%7D%20%5C%5C%20%5Ccdots%20%26%5Ccdots%20%26%5Ccdots%20%26%5Ccdots%20%5C%5C%20%20a%7Bn1%7D%26%20a%7Bn2%7D%20%26%20%5Ccdots%20%26%20a%7B%7Bnn%7D%7D%20%5C%5C%5Cend%7Bbmatrix%7D#card=math&code=x%20%3D%20%5C%20%5Cbegin%7Bbmatrix%7Dx%7B1%7D%20%5C%5C%20x%7B1%7D%20%5C%5C%20%20%5Cvdots%20%5C%5C%20x%7Bn%7D%20%5C%5C%20%5Cend%7Bbmatrix%7D%2CA%20%3D%20%5Cbegin%7Bbmatrix%7D%20%20a%7B11%7D%26%20a%7B12%7D%26%20%5Ccdots%20%26%20a%7B1n%7D%20%5C%5C%20%20a%7B21%7D%26%20a%7B22%7D%26%20%5Ccdots%20%26%20a%7B2n%7D%20%5C%5C%20%5Ccdots%20%26%5Ccdots%20%26%5Ccdots%20%26%5Ccdots%20%5C%5C%20%20a%7Bn1%7D%26%20a%7Bn2%7D%20%26%20%5Ccdots%20%26%20a%7B%7Bnn%7D%7D%20%5C%5C%5Cend%7Bbmatrix%7D&id=oEkjB),这二次型3.CS229-Math - 图561可改写成矩阵向量形式3.CS229-Math - 图562。其中3.CS229-Math - 图563称为二次型矩阵,因为![](https://g.yuque.com/gr/latex?a%7B%7Bij%7D%7D%20%3Da%7B%7Bji%7D%7D(i%2Cj%20%3D1%2C2%2C%5Ccdots%2Cn)#card=math&code=a%7B%7Bij%7D%7D%20%3Da_%7B%7Bji%7D%7D%28i%2Cj%20%3D1%2C2%2C%5Ccdots%2Cn%29&id=W3E1o),所以二次型矩阵均为对称矩阵,且二次型与对称矩阵一一对应,并把矩阵3.CS229-Math - 图564的秩称为二次型的秩。

2.惯性定理,二次型的标准形和规范形

(1) 惯性定理

对于任一二次型,不论选取怎样的合同变换使它化为仅含平方项的标准型,其正负惯性指数与所选变换无关,这就是所谓的惯性定理。

(2) 标准形

二次型3.CS229-Math - 图565%20%3Dx%5E%7BT%7D%7BAx%7D#card=math&code=f%20%3D%20%5Cleft%28%20x%7B1%7D%2Cx%7B2%7D%2C%5Ccdots%2Cx_%7Bn%7D%20%5Cright%29%20%3Dx%5E%7BT%7D%7BAx%7D&id=d9lpo)经过合同变换3.CS229-Math - 图566化为3.CS229-Math - 图567

3.CS229-Math - 图568称为 3.CS229-Math - 图569#card=math&code=f%28r%20%5Cleq%20n%29&id=zDzt1)的标准形。在一般的数域内,二次型的标准形不是唯一的,与所作的合同变换有关,但系数不为零的平方项的个数由3.CS229-Math - 图570#card=math&code=r%28A%29&id=t6jjG)唯一确定。

(3) 规范形

任一实二次型3.CS229-Math - 图571都可经过合同变换化为规范形3.CS229-Math - 图572,其中3.CS229-Math - 图5733.CS229-Math - 图574的秩,3.CS229-Math - 图575为正惯性指数,3.CS229-Math - 图576为负惯性指数,且规范型唯一。

3.用正交变换和配方法化二次型为标准形,二次型及其矩阵的正定性

3.CS229-Math - 图577正定3.CS229-Math - 图578%2CA%5E%7BT%7D%2CA%5E%7B-%201%7D%2CA%5E%7B*%7D#card=math&code=%5CRightarrow%20%7BkA%7D%28k%20%3E%200%29%2CA%5E%7BT%7D%2CA%5E%7B-%201%7D%2CA%5E%7B%2A%7D&id=VTTCw)正定;3.CS229-Math - 图579,3.CS229-Math - 图580可逆;3.CS229-Math - 图581,且3.CS229-Math - 图582

3.CS229-Math - 图5833.CS229-Math - 图584正定3.CS229-Math - 图585正定,但3.CS229-Math - 图5863.CS229-Math - 图587不一定正定

3.CS229-Math - 图588正定3.CS229-Math - 图589%20%3D%20x%5E%7BT%7D%7BAx%7D%20%3E%200%2C%5Cforall%20x%20%5Cneq%200#card=math&code=%5CLeftrightarrow%20f%28x%29%20%3D%20x%5E%7BT%7D%7BAx%7D%20%3E%200%2C%5Cforall%20x%20%5Cneq%200&id=DOQu1)

3.CS229-Math - 图590的各阶顺序主子式全大于零

3.CS229-Math - 图591的所有特征值大于零

3.CS229-Math - 图592的正惯性指数为3.CS229-Math - 图593

3.CS229-Math - 图594存在可逆阵3.CS229-Math - 图595使3.CS229-Math - 图596

3.CS229-Math - 图597存在正交矩阵3.CS229-Math - 图598,使3.CS229-Math - 图599

其中3.CS229-Math - 图600正定3.CS229-Math - 图601%2CA%5E%7BT%7D%2CA%5E%7B-%201%7D%2CA%5E%7B*%7D#card=math&code=%5CRightarrow%20%7BkA%7D%28k%20%3E0%29%2CA%5E%7BT%7D%2CA%5E%7B-%201%7D%2CA%5E%7B%2A%7D&id=GCzt0)正定; 3.CS229-Math - 图602可逆;3.CS229-Math - 图603,且3.CS229-Math - 图604

概率论和数理统计

随机事件和概率

1.事件的关系与运算

(1) 子事件:3.CS229-Math - 图605,若3.CS229-Math - 图606发生,则3.CS229-Math - 图607发生。

(2) 相等事件:3.CS229-Math - 图608,即3.CS229-Math - 图609,且3.CS229-Math - 图610

(3) 和事件:3.CS229-Math - 图611(或3.CS229-Math - 图612),3.CS229-Math - 图6133.CS229-Math - 图614中至少有一个发生。

(4) 差事件:3.CS229-Math - 图6153.CS229-Math - 图616发生但3.CS229-Math - 图617不发生。

(5) 积事件:3.CS229-Math - 图618(或3.CS229-Math - 图619),3.CS229-Math - 图6203.CS229-Math - 图621同时发生。

(6) 互斥事件(互不相容):3.CS229-Math - 图622=3.CS229-Math - 图623

(7) 互逆事件(对立事件):
3.CS229-Math - 图624

2.运算律
(1) 交换律:3.CS229-Math - 图625
(2) 结合律:3.CS229-Math - 图626%5Cbigcup%20C%3DA%5Cbigcup%20(B%5Cbigcup%20C)#card=math&code=%28A%5Cbigcup%20B%29%5Cbigcup%20C%3DA%5Cbigcup%20%28B%5Cbigcup%20C%29&id=cXKaj)
(3) 分配律:3.CS229-Math - 图627%5Cbigcap%20C%3DA%5Cbigcap%20(B%5Cbigcap%20C)#card=math&code=%28A%5Cbigcap%20B%29%5Cbigcap%20C%3DA%5Cbigcap%20%28B%5Cbigcap%20C%29&id=jBDVd)

3.德$\centerdot $摩根律

3.CS229-Math - 图628 3.CS229-Math - 图629

4.完全事件组

3.CS229-Math - 图630两两互斥,且和事件为必然事件,即3.CS229-Math - 图631

5.概率的基本公式
(1)条件概率:
3.CS229-Math - 图632%3D%5Cfrac%7BP(AB)%7D%7BP(A)%7D#card=math&code=P%28B%7CA%29%3D%5Cfrac%7BP%28AB%29%7D%7BP%28A%29%7D&id=Y3At3),表示3.CS229-Math - 图633发生的条件下,3.CS229-Math - 图634发生的概率。

(2)全概率公式:
3.CS229-Math - 图635%3D%5Csum%5Climits%7Bi%3D1%7D%5E%7Bn%7D%7BP(A%7C%7B%7BB%7D%7Bi%7D%7D)P(%7B%7BB%7D%7Bi%7D%7D)%2C%7B%7BB%7D%7Bi%7D%7D%7B%7BB%7D%7Bj%7D%7D%7D%3D%5Cvarnothing%20%2Ci%5Cne%20j%2C%5Cunderset%7Bi%3D1%7D%7B%5Coverset%7Bn%7D%7B%5Cmathop%7B%5Cbigcup%20%7D%7D%7D%5C%2C%7B%7BB%7D%7Bi%7D%7D%3D%5COmega#card=math&code=P%28A%29%3D%5Csum%5Climits%7Bi%3D1%7D%5E%7Bn%7D%7BP%28A%7C%7B%7BB%7D%7Bi%7D%7D%29P%28%7B%7BB%7D%7Bi%7D%7D%29%2C%7B%7BB%7D%7Bi%7D%7D%7B%7BB%7D%7Bj%7D%7D%7D%3D%5Cvarnothing%20%2Ci%5Cne%20j%2C%5Cunderset%7Bi%3D1%7D%7B%5Coverset%7Bn%7D%7B%5Cmathop%7B%5Cbigcup%20%7D%7D%7D%5C%2C%7B%7BB%7D%7Bi%7D%7D%3D%5COmega&id=qnCuj)

(3) Bayes 公式:

3.CS229-Math - 图636%3D%5Cfrac%7BP(A%7C%7B%7BB%7D%7Bj%7D%7D)P(%7B%7BB%7D%7Bj%7D%7D)%7D%7B%5Csum%5Climits%7Bi%3D1%7D%5E%7Bn%7D%7BP(A%7C%7B%7BB%7D%7Bi%7D%7D)P(%7B%7BB%7D%7Bi%7D%7D)%7D%7D%2Cj%3D1%2C2%2C%5Ccdots%20%2Cn#card=math&code=P%28%7B%7BB%7D%7Bj%7D%7D%7CA%29%3D%5Cfrac%7BP%28A%7C%7B%7BB%7D%7Bj%7D%7D%29P%28%7B%7BB%7D%7Bj%7D%7D%29%7D%7B%5Csum%5Climits%7Bi%3D1%7D%5E%7Bn%7D%7BP%28A%7C%7B%7BB%7D%7Bi%7D%7D%29P%28%7B%7BB%7D%7Bi%7D%7D%29%7D%7D%2Cj%3D1%2C2%2C%5Ccdots%20%2Cn&id=QFTg5)
注:上述公式中事件![](https://g.yuque.com/gr/latex?%7B%7BB%7D
%7Bi%7D%7D#card=math&code=%7B%7BB%7D_%7Bi%7D%7D&id=OO1JA)的个数可为可列个。

(4)乘法公式:
3.CS229-Math - 图637%3DP(%7B%7BA%7D%7B1%7D%7D)P(%7B%7BA%7D%7B2%7D%7D%7C%7B%7BA%7D%7B1%7D%7D)%3DP(%7B%7BA%7D%7B2%7D%7D)P(%7B%7BA%7D%7B1%7D%7D%7C%7B%7BA%7D%7B2%7D%7D)#card=math&code=P%28%7B%7BA%7D%7B1%7D%7D%7B%7BA%7D%7B2%7D%7D%29%3DP%28%7B%7BA%7D%7B1%7D%7D%29P%28%7B%7BA%7D%7B2%7D%7D%7C%7B%7BA%7D%7B1%7D%7D%29%3DP%28%7B%7BA%7D%7B2%7D%7D%29P%28%7B%7BA%7D%7B1%7D%7D%7C%7B%7BA%7D%7B2%7D%7D%29&id=f6AsK)
3.CS229-Math - 图638%3DP(%7B%7BA%7D%7B1%7D%7D)P(%7B%7BA%7D%7B2%7D%7D%7C%7B%7BA%7D%7B1%7D%7D)P(%7B%7BA%7D%7B3%7D%7D%7C%7B%7BA%7D%7B1%7D%7D%7B%7BA%7D%7B2%7D%7D)%5Ccdots%20P(%7B%7BA%7D%7Bn%7D%7D%7C%7B%7BA%7D%7B1%7D%7D%7B%7BA%7D%7B2%7D%7D%5Ccdots%20%7B%7BA%7D%7Bn-1%7D%7D)#card=math&code=P%28%7B%7BA%7D%7B1%7D%7D%7B%7BA%7D%7B2%7D%7D%5Ccdots%20%7B%7BA%7D%7Bn%7D%7D%29%3DP%28%7B%7BA%7D%7B1%7D%7D%29P%28%7B%7BA%7D%7B2%7D%7D%7C%7B%7BA%7D%7B1%7D%7D%29P%28%7B%7BA%7D%7B3%7D%7D%7C%7B%7BA%7D%7B1%7D%7D%7B%7BA%7D%7B2%7D%7D%29%5Ccdots%20P%28%7B%7BA%7D%7Bn%7D%7D%7C%7B%7BA%7D%7B1%7D%7D%7B%7BA%7D%7B2%7D%7D%5Ccdots%20%7B%7BA%7D_%7Bn-1%7D%7D%29&id=K28sO)

6.事件的独立性

(1)3.CS229-Math - 图6393.CS229-Math - 图640相互独立

3.CS229-Math - 图641%3DP(A)P(B)#card=math&code=%5CLeftrightarrow%20P%28AB%29%3DP%28A%29P%28B%29&id=BXgkE)

(2)3.CS229-Math - 图6423.CS229-Math - 图6433.CS229-Math - 图644两两独立
3.CS229-Math - 图645%3DP(A)P(B)#card=math&code=%5CLeftrightarrow%20P%28AB%29%3DP%28A%29P%28B%29&id=qs32i);3.CS229-Math - 图646%3DP(B)P(C)#card=math&code=P%28BC%29%3DP%28B%29P%28C%29&id=ZrCOS) ;3.CS229-Math - 图647%3DP(A)P(C)#card=math&code=P%28AC%29%3DP%28A%29P%28C%29&id=rePzH);

(3)3.CS229-Math - 图6483.CS229-Math - 图6493.CS229-Math - 图650相互独立
3.CS229-Math - 图651%3DP(A)P(B)#card=math&code=%5CLeftrightarrow%20P%28AB%29%3DP%28A%29P%28B%29&id=uKbam); 3.CS229-Math - 图652%3DP(B)P(C)#card=math&code=P%28BC%29%3DP%28B%29P%28C%29&id=Ld6Ih) ;
3.CS229-Math - 图653%3DP(A)P(C)#card=math&code=P%28AC%29%3DP%28A%29P%28C%29&id=ZwZPa) ; 3.CS229-Math - 图654%3DP(A)P(B)P(C)#card=math&code=P%28ABC%29%3DP%28A%29P%28B%29P%28C%29&id=iowR6)

7.独立重复试验

将某试验独立重复3.CS229-Math - 图655次,若每次实验中事件 A 发生的概率为3.CS229-Math - 图656,则3.CS229-Math - 图657次试验中3.CS229-Math - 图658发生3.CS229-Math - 图659次的概率为:
3.CS229-Math - 图660%3DC%7Bn%7D%5E%7Bk%7D%7B%7Bp%7D%5E%7Bk%7D%7D%7B%7B(1-p)%7D%5E%7Bn-k%7D%7D#card=math&code=P%28X%3Dk%29%3DC%7Bn%7D%5E%7Bk%7D%7B%7Bp%7D%5E%7Bk%7D%7D%7B%7B%281-p%29%7D%5E%7Bn-k%7D%7D&id=emQDC)

8.重要公式与结论
3.CS229-Math - 图661P(%5Cbar%7BA%7D)%3D1-P(A)#card=math&code=%281%29P%28%5Cbar%7BA%7D%29%3D1-P%28A%29&id=cN0NN)

3.CS229-Math - 图662P(A%5Cbigcup%20B)%3DP(A)%2BP(B)-P(AB)#card=math&code=%282%29P%28A%5Cbigcup%20B%29%3DP%28A%29%2BP%28B%29-P%28AB%29&id=JVmQZ)
3.CS229-Math - 图663%3DP(A)%2BP(B)%2BP(C)-P(AB)-P(BC)-P(AC)%2BP(ABC)#card=math&code=P%28A%5Cbigcup%20B%5Cbigcup%20C%29%3DP%28A%29%2BP%28B%29%2BP%28C%29-P%28AB%29-P%28BC%29-P%28AC%29%2BP%28ABC%29&id=ToMeR)

3.CS229-Math - 图664P(A-B)%3DP(A)-P(AB)#card=math&code=%283%29P%28A-B%29%3DP%28A%29-P%28AB%29&id=q9ie7)

3.CS229-Math - 图665P(A%5Cbar%7BB%7D)%3DP(A)-P(AB)%2CP(A)%3DP(AB)%2BP(A%5Cbar%7BB%7D)%2C#card=math&code=%284%29P%28A%5Cbar%7BB%7D%29%3DP%28A%29-P%28AB%29%2CP%28A%29%3DP%28AB%29%2BP%28A%5Cbar%7BB%7D%29%2C&id=UiYh3)
3.CS229-Math - 图666%3DP(A)%2BP(%5Cbar%7BA%7DB)%3DP(AB)%2BP(A%5Cbar%7BB%7D)%2BP(%5Cbar%7BA%7DB)#card=math&code=P%28A%5Cbigcup%20B%29%3DP%28A%29%2BP%28%5Cbar%7BA%7DB%29%3DP%28AB%29%2BP%28A%5Cbar%7BB%7D%29%2BP%28%5Cbar%7BA%7DB%29&id=gYOoz)

(5)条件概率3.CS229-Math - 图667#card=math&code=P%28%5Ccenterdot%20%7CB%29&id=ZZKul)满足概率的所有性质,
例如:. 3.CS229-Math - 图668%3D1-P(%7B%7BA%7D%7B1%7D%7D%7CB)#card=math&code=P%28%7B%7B%5Cbar%7BA%7D%7D%7B1%7D%7D%7CB%29%3D1-P%28%7B%7BA%7D%7B1%7D%7D%7CB%29&id=gidNS)
![](https://g.yuque.com/gr/latex?P(%7B%7BA%7D
%7B1%7D%7D%5Cbigcup%20%7B%7BA%7D%7B2%7D%7D%7CB)%3DP(%7B%7BA%7D%7B1%7D%7D%7CB)%2BP(%7B%7BA%7D%7B2%7D%7D%7CB)-P(%7B%7BA%7D%7B1%7D%7D%7B%7BA%7D%7B2%7D%7D%7CB)#card=math&code=P%28%7B%7BA%7D%7B1%7D%7D%5Cbigcup%20%7B%7BA%7D%7B2%7D%7D%7CB%29%3DP%28%7B%7BA%7D%7B1%7D%7D%7CB%29%2BP%28%7B%7BA%7D%7B2%7D%7D%7CB%29-P%28%7B%7BA%7D%7B1%7D%7D%7B%7BA%7D%7B2%7D%7D%7CB%29&id=jcOa7)
![](https://g.yuque.com/gr/latex?P(%7B%7BA%7D
%7B1%7D%7D%7B%7BA%7D%7B2%7D%7D%7CB)%3DP(%7B%7BA%7D%7B1%7D%7D%7CB)P(%7B%7BA%7D%7B2%7D%7D%7C%7B%7BA%7D%7B1%7D%7DB)#card=math&code=P%28%7B%7BA%7D%7B1%7D%7D%7B%7BA%7D%7B2%7D%7D%7CB%29%3DP%28%7B%7BA%7D%7B1%7D%7D%7CB%29P%28%7B%7BA%7D%7B2%7D%7D%7C%7B%7BA%7D_%7B1%7D%7DB%29&id=L4jw0)

(6)若3.CS229-Math - 图669相互独立,则3.CS229-Math - 图670%3D%5Cprod%5Climits%7Bi%3D1%7D%5E%7Bn%7D%7BP(%7B%7BA%7D%7Bi%7D%7D)%7D%2C#card=math&code=P%28%5Cbigcap%5Climits%7Bi%3D1%7D%5E%7Bn%7D%7B%7B%7BA%7D%7Bi%7D%7D%7D%29%3D%5Cprod%5Climits%7Bi%3D1%7D%5E%7Bn%7D%7BP%28%7B%7BA%7D%7Bi%7D%7D%29%7D%2C&id=Fl9cE)
3.CS229-Math - 图671%3D%5Cprod%5Climits%7Bi%3D1%7D%5E%7Bn%7D%7B(1-P(%7B%7BA%7D%7Bi%7D%7D))%7D#card=math&code=P%28%5Cbigcup%5Climits%7Bi%3D1%7D%5E%7Bn%7D%7B%7B%7BA%7D%7Bi%7D%7D%7D%29%3D%5Cprod%5Climits%7Bi%3D1%7D%5E%7Bn%7D%7B%281-P%28%7B%7BA%7D%7Bi%7D%7D%29%29%7D&id=CxZnt)

(7)互斥、互逆与独立性之间的关系:
3.CS229-Math - 图6723.CS229-Math - 图673互逆3.CS229-Math - 图674 3.CS229-Math - 图6753.CS229-Math - 图676互斥,但反之不成立,3.CS229-Math - 图6773.CS229-Math - 图678互斥(或互逆)且均非零概率事件$\Rightarrow $$A3.CS229-Math - 图679B$不独立.

(8)若3.CS229-Math - 图680相互独立,则3.CS229-Math - 图681#card=math&code=f%28%7B%7BA%7D%7B1%7D%7D%2C%7B%7BA%7D%7B2%7D%7D%2C%5Ccdots%20%2C%7B%7BA%7D%7Bm%7D%7D%29&id=S9nlf)与![](https://g.yuque.com/gr/latex?g(%7B%7BB%7D%7B1%7D%7D%2C%7B%7BB%7D%7B2%7D%7D%2C%5Ccdots%20%2C%7B%7BB%7D%7Bn%7D%7D)#card=math&code=g%28%7B%7BB%7D%7B1%7D%7D%2C%7B%7BB%7D%7B2%7D%7D%2C%5Ccdots%20%2C%7B%7BB%7D_%7Bn%7D%7D%29&id=Bn94t)也相互独立,其中3.CS229-Math - 图682%2Cg(%5Ccenterdot%20)#card=math&code=f%28%5Ccenterdot%20%29%2Cg%28%5Ccenterdot%20%29&id=U8uMJ)分别表示对相应事件做任意事件运算后所得的事件,另外,概率为 1(或 0)的事件与任何事件相互独立.

随机变量及其概率分布

1.随机变量及概率分布

取值带有随机性的变量,严格地说是定义在样本空间上,取值于实数的函数称为随机变量,概率分布通常指分布函数或分布律

2.分布函数的概念与性质

定义: 3.CS229-Math - 图683%20%3D%20P(X%20%5Cleq%20x)%2C%20-%20%5Cinfty%20%3C%20x%20%3C%20%2B%20%5Cinfty#card=math&code=F%28x%29%20%3D%20P%28X%20%5Cleq%20x%29%2C%20-%20%5Cinfty%20%3C%20x%20%3C%20%2B%20%5Cinfty&id=InGjX)

性质:(1)3.CS229-Math - 图684%20%5Cleq%201#card=math&code=0%20%5Cleq%20F%28x%29%20%5Cleq%201&id=kaTTF)

(2) 3.CS229-Math - 图685#card=math&code=F%28x%29&id=Qlze1)单调不减

(3) 右连续3.CS229-Math - 图686%20%3D%20F(x)#card=math&code=F%28x%20%2B%200%29%20%3D%20F%28x%29&id=oGxUl)

(4) 3.CS229-Math - 图687%20%3D%200%2CF(%20%2B%20%5Cinfty)%20%3D%201#card=math&code=F%28%20-%20%5Cinfty%29%20%3D%200%2CF%28%20%2B%20%5Cinfty%29%20%3D%201&id=vV7i2)

3.离散型随机变量的概率分布

3.CS229-Math - 图688%20%3D%20p%7Bi%7D%2Ci%20%3D%201%2C2%2C%5Ccdots%2Cn%2C%5Ccdots%5Cquad%5Cquad%20p%7Bi%7D%20%5Cgeq%200%2C%5Csum%7Bi%20%3D1%7D%5E%7B%5Cinfty%7Dp%7Bi%7D%20%3D%201#card=math&code=P%28X%20%3D%20x%7Bi%7D%29%20%3D%20p%7Bi%7D%2Ci%20%3D%201%2C2%2C%5Ccdots%2Cn%2C%5Ccdots%5Cquad%5Cquad%20p%7Bi%7D%20%5Cgeq%200%2C%5Csum%7Bi%20%3D1%7D%5E%7B%5Cinfty%7Dp_%7Bi%7D%20%3D%201&id=dW04Y)

4.连续型随机变量的概率密度

概率密度3.CS229-Math - 图689#card=math&code=f%28x%29&id=knAYc);非负可积,且:

(1)3.CS229-Math - 图690%20%5Cgeq%200%2C#card=math&code=f%28x%29%20%5Cgeq%200%2C&id=APj0a)

(2)3.CS229-Math - 图691%7Bdx%7D%20%3D%201%7D#card=math&code=%5Cint_%7B-%20%5Cinfty%7D%5E%7B%2B%5Cinfty%7D%7Bf%28x%29%7Bdx%7D%20%3D%201%7D&id=x7UnU)

(3)3.CS229-Math - 图6923.CS229-Math - 图693#card=math&code=f%28x%29&id=EmfLx)的连续点,则:

3.CS229-Math - 图694%20%3D%20F’(x)#card=math&code=f%28x%29%20%3D%20F%27%28x%29&id=lxjku)分布函数3.CS229-Math - 图695%20%3D%20%5Cint%7B-%20%5Cinfty%7D%5E%7Bx%7D%7Bf(t)%7Bdt%7D%7D#card=math&code=F%28x%29%20%3D%20%5Cint%7B-%20%5Cinfty%7D%5E%7Bx%7D%7Bf%28t%29%7Bdt%7D%7D&id=kxatA)

5.常见分布

(1) 0-1 分布:3.CS229-Math - 图696%20%3D%20p%5E%7Bk%7D%7B(1%20-%20p)%7D%5E%7B1%20-%20k%7D%2Ck%20%3D%200%2C1#card=math&code=P%28X%20%3D%20k%29%20%3D%20p%5E%7Bk%7D%7B%281%20-%20p%29%7D%5E%7B1%20-%20k%7D%2Ck%20%3D%200%2C1&id=gWvhU)

(2) 二项分布:3.CS229-Math - 图697#card=math&code=B%28n%2Cp%29&id=ThLpS): 3.CS229-Math - 图698%20%3D%20C%7Bn%7D%5E%7Bk%7Dp%5E%7Bk%7D%7B(1%20-%20p)%7D%5E%7Bn%20-%20k%7D%2Ck%20%3D0%2C1%2C%5Ccdots%2Cn#card=math&code=P%28X%20%3D%20k%29%20%3D%20C%7Bn%7D%5E%7Bk%7Dp%5E%7Bk%7D%7B%281%20-%20p%29%7D%5E%7Bn%20-%20k%7D%2Ck%20%3D0%2C1%2C%5Ccdots%2Cn&id=PSD6U)

(3) Poisson分布:3.CS229-Math - 图699#card=math&code=p%28%5Clambda%29&id=bHqJD): 3.CS229-Math - 图700%20%3D%20%5Cfrac%7B%5Clambda%5E%7Bk%7D%7D%7Bk!%7De%5E%7B-%5Clambda%7D%2C%5Clambda%20%3E%200%2Ck%20%3D%200%2C1%2C2%5Ccdots#card=math&code=P%28X%20%3D%20k%29%20%3D%20%5Cfrac%7B%5Clambda%5E%7Bk%7D%7D%7Bk%21%7De%5E%7B-%5Clambda%7D%2C%5Clambda%20%3E%200%2Ck%20%3D%200%2C1%2C2%5Ccdots&id=ZJXTQ)

(4) 均匀分布3.CS229-Math - 图701#card=math&code=U%28a%2Cb%29&id=OydWO):3.CS229-Math - 图702%20%3D%20%5C%7B%20%5Cbegin%7Bmatrix%7D%20%20%26%20%5Cfrac%7B1%7D%7Bb%20-%20a%7D%2Ca%20%3C%20x%3C%20b%20%5C%5C%20%20%26%200%2C%20%5C%5C%20%5Cend%7Bmatrix%7D#card=math&code=f%28x%29%20%3D%20%5C%7B%20%5Cbegin%7Bmatrix%7D%20%20%26%20%5Cfrac%7B1%7D%7Bb%20-%20a%7D%2Ca%20%3C%20x%3C%20b%20%5C%5C%20%20%26%200%2C%20%5C%5C%20%5Cend%7Bmatrix%7D&id=WuCR6)

(5) 正态分布:3.CS229-Math - 图703%3A#card=math&code=N%28%5Cmu%2C%5Csigma%5E%7B2%7D%29%3A&id=hJQxP) 3.CS229-Math - 图704%20%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B2%5Cpi%7D%5Csigma%7De%5E%7B-%20%5Cfrac%7B%7B(x%20-%20%5Cmu)%7D%5E%7B2%7D%7D%7B2%5Csigma%5E%7B2%7D%7D%7D%2C%5Csigma%20%3E%200%2C%5Cinfty%20%3C%20x%20%3C%20%2B%20%5Cinfty#card=math&code=%5Cvarphi%28x%29%20%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B2%5Cpi%7D%5Csigma%7De%5E%7B-%20%5Cfrac%7B%7B%28x%20-%20%5Cmu%29%7D%5E%7B2%7D%7D%7B2%5Csigma%5E%7B2%7D%7D%7D%2C%5Csigma%20%3E%200%2C%5Cinfty%20%3C%20x%20%3C%20%2B%20%5Cinfty&id=eHiFQ)

(6)指数分布:3.CS229-Math - 图705%3Af(x)%20%3D%5C%7B%20%5Cbegin%7Bmatrix%7D%20%20%26%20%5Clambda%20e%5E%7B-%7B%CE%BBx%7D%7D%2Cx%20%3E%200%2C%5Clambda%20%3E%200%20%5C%5C%20%20%26%200%2C%20%5C%5C%20%5Cend%7Bmatrix%7D#card=math&code=E%28%5Clambda%29%3Af%28x%29%20%3D%5C%7B%20%5Cbegin%7Bmatrix%7D%20%20%26%20%5Clambda%20e%5E%7B-%7B%CE%BBx%7D%7D%2Cx%20%3E%200%2C%5Clambda%20%3E%200%20%5C%5C%20%20%26%200%2C%20%5C%5C%20%5Cend%7Bmatrix%7D&id=hTf3O)

(7)几何分布:3.CS229-Math - 图706%3AP(X%20%3D%20k)%20%3D%20%7B(1%20-%20p)%7D%5E%7Bk%20-%201%7Dp%2C0%20%3C%20p%20%3C%201%2Ck%20%3D%201%2C2%2C%5Ccdots.#card=math&code=G%28p%29%3AP%28X%20%3D%20k%29%20%3D%20%7B%281%20-%20p%29%7D%5E%7Bk%20-%201%7Dp%2C0%20%3C%20p%20%3C%201%2Ck%20%3D%201%2C2%2C%5Ccdots.&id=he2Sh)

(8)超几何分布: 3.CS229-Math - 图707%3AP(X%20%3D%20k)%20%3D%20%5Cfrac%7BC%7BM%7D%5E%7Bk%7DC%7BN%20-%20M%7D%5E%7Bn%20-k%7D%7D%7BC%7BN%7D%5E%7Bn%7D%7D%2Ck%20%3D0%2C1%2C%5Ccdots%2Cmin(n%2CM)#card=math&code=H%28N%2CM%2Cn%29%3AP%28X%20%3D%20k%29%20%3D%20%5Cfrac%7BC%7BM%7D%5E%7Bk%7DC%7BN%20-%20M%7D%5E%7Bn%20-k%7D%7D%7BC%7BN%7D%5E%7Bn%7D%7D%2Ck%20%3D0%2C1%2C%5Ccdots%2Cmin%28n%2CM%29&id=aZSa7)

6.随机变量函数的概率分布

(1)离散型:3.CS229-Math - 图708%20%3D%20p%7Bi%7D%2CY%20%3D%20g(X)#card=math&code=P%28X%20%3D%20x%7B1%7D%29%20%3D%20p_%7Bi%7D%2CY%20%3D%20g%28X%29&id=Dd534)

则: 3.CS229-Math - 图709%20%3D%20%5Csum%7Bg(x%7Bi%7D)%20%3D%20y%7Bi%7D%7D%5E%7B%7D%7BP(X%20%3D%20x%7Bi%7D)%7D#card=math&code=P%28Y%20%3D%20y%7Bj%7D%29%20%3D%20%5Csum%7Bg%28x%7Bi%7D%29%20%3D%20y%7Bi%7D%7D%5E%7B%7D%7BP%28X%20%3D%20x_%7Bi%7D%29%7D&id=Wg0u5)

(2)连续型:3.CS229-Math - 图710%2CY%20%3D%20g(x)#card=math&code=X%5Ctilde%7B%5C%20%7Df_%7BX%7D%28x%29%2CY%20%3D%20g%28x%29&id=CRyrc)

则:3.CS229-Math - 图711%20%3D%20P(Y%20%5Cleq%20y)%20%3D%20P(g(X)%20%5Cleq%20y)%20%3D%20%5Cint%7Bg(x)%20%5Cleq%20y%7D%5E%7B%7D%7Bf%7Bx%7D(x)dx%7D#card=math&code=F%7By%7D%28y%29%20%3D%20P%28Y%20%5Cleq%20y%29%20%3D%20P%28g%28X%29%20%5Cleq%20y%29%20%3D%20%5Cint%7Bg%28x%29%20%5Cleq%20y%7D%5E%7B%7D%7Bf%7Bx%7D%28x%29dx%7D&id=obDP0), ![](https://g.yuque.com/gr/latex?f%7BY%7D(y)%20%3D%20F’%7BY%7D(y)#card=math&code=f%7BY%7D%28y%29%20%3D%20F%27_%7BY%7D%28y%29&id=jzSE7)

7.重要公式与结论

(1) 3.CS229-Math - 图712%20%5CRightarrow%20%5Cvarphi(0)%20%3D%20%5Cfrac%7B1%7D%7B%5Csqrt%7B2%5Cpi%7D%7D%2C%5CPhi(0)%20%3D%5Cfrac%7B1%7D%7B2%7D%2C#card=math&code=X%5Csim%20N%280%2C1%29%20%5CRightarrow%20%5Cvarphi%280%29%20%3D%20%5Cfrac%7B1%7D%7B%5Csqrt%7B2%5Cpi%7D%7D%2C%5CPhi%280%29%20%3D%5Cfrac%7B1%7D%7B2%7D%2C&id=ijLPl) 3.CS229-Math - 图713%20%3D%20P(X%20%5Cleq%20-%20a)%20%3D%201%20-%20%5CPhi(a)#card=math&code=%5CPhi%28%20-%20a%29%20%3D%20P%28X%20%5Cleq%20-%20a%29%20%3D%201%20-%20%5CPhi%28a%29&id=y2yZt)

(2) 3.CS229-Math - 图714%20%5CRightarrow%20%5Cfrac%7BX%20-%5Cmu%7D%7B%5Csigma%7D%5Csim%20N%5Cleft(%200%2C1%20%5Cright)%2CP(X%20%5Cleq%20a)%20%3D%20%5CPhi(%5Cfrac%7Ba%20-%5Cmu%7D%7B%5Csigma%7D)#card=math&code=X%5Csim%20N%5Cleft%28%20%5Cmu%2C%5Csigma%5E%7B2%7D%20%5Cright%29%20%5CRightarrow%20%5Cfrac%7BX%20-%5Cmu%7D%7B%5Csigma%7D%5Csim%20N%5Cleft%28%200%2C1%20%5Cright%29%2CP%28X%20%5Cleq%20a%29%20%3D%20%5CPhi%28%5Cfrac%7Ba%20-%5Cmu%7D%7B%5Csigma%7D%29&id=qKOpt)

(3) 3.CS229-Math - 图715%20%5CRightarrow%20P(X%20%3E%20s%20%2B%20t%7CX%20%3E%20s)%20%3D%20P(X%20%3E%20t)#card=math&code=X%5Csim%20E%28%5Clambda%29%20%5CRightarrow%20P%28X%20%3E%20s%20%2B%20t%7CX%20%3E%20s%29%20%3D%20P%28X%20%3E%20t%29&id=GYOeS)

(4) 3.CS229-Math - 图716%20%5CRightarrow%20P(X%20%3D%20m%20%2B%20k%7CX%20%3E%20m)%20%3D%20P(X%20%3D%20k)#card=math&code=X%5Csim%20G%28p%29%20%5CRightarrow%20P%28X%20%3D%20m%20%2B%20k%7CX%20%3E%20m%29%20%3D%20P%28X%20%3D%20k%29&id=mz2xa)

(5) 离散型随机变量的分布函数为阶梯间断函数;连续型随机变量的分布函数为连续函数,但不一定为处处可导函数。

(6) 存在既非离散也非连续型随机变量。

多维随机变量及其分布

1.二维随机变量及其联合分布

由两个随机变量构成的随机向量3.CS229-Math - 图717#card=math&code=%28X%2CY%29&id=SllFw), 联合分布为3.CS229-Math - 图718%20%3D%20P(X%20%5Cleq%20x%2CY%20%5Cleq%20y)#card=math&code=F%28x%2Cy%29%20%3D%20P%28X%20%5Cleq%20x%2CY%20%5Cleq%20y%29&id=q5wvn)

2.二维离散型随机变量的分布

(1) 联合概率分布律 3.CS229-Math - 图719

(2) 边缘分布律 3.CS229-Math - 图720 3.CS229-Math - 图721

(3) 条件分布律 3.CS229-Math - 图722
3.CS229-Math - 图723

3. 二维连续性随机变量的密度

(1) 联合概率密度3.CS229-Math - 图724%3A#card=math&code=f%28x%2Cy%29%3A&id=TKi8h)

  1. 3.CS229-Math - 图725%20%5Cgeq%200#card=math&code=f%28x%2Cy%29%20%5Cgeq%200&id=YMX8T)
  2. 3.CS229-Math - 图726dxdy%7D%7D%20%3D%201#card=math&code=%5Cint%7B-%20%5Cinfty%7D%5E%7B%2B%20%5Cinfty%7D%7B%5Cint%7B-%20%5Cinfty%7D%5E%7B%2B%20%5Cinfty%7D%7Bf%28x%2Cy%29dxdy%7D%7D%20%3D%201&id=ZdMtw)

(2) 分布函数:3.CS229-Math - 图727%20%3D%20%5Cint%7B-%20%5Cinfty%7D%5E%7Bx%7D%7B%5Cint%7B-%20%5Cinfty%7D%5E%7By%7D%7Bf(u%2Cv)dudv%7D%7D#card=math&code=F%28x%2Cy%29%20%3D%20%5Cint%7B-%20%5Cinfty%7D%5E%7Bx%7D%7B%5Cint%7B-%20%5Cinfty%7D%5E%7By%7D%7Bf%28u%2Cv%29dudv%7D%7D&id=VYfRu)

(3) 边缘概率密度: 3.CS229-Math - 图728%20%3D%20%5Cint%7B-%20%5Cinfty%7D%5E%7B%2B%20%5Cinfty%7D%7Bf%5Cleft(%20x%2Cy%20%5Cright)%7Bdy%7D%7D#card=math&code=f%7BX%7D%5Cleft%28%20x%20%5Cright%29%20%3D%20%5Cint%7B-%20%5Cinfty%7D%5E%7B%2B%20%5Cinfty%7D%7Bf%5Cleft%28%20x%2Cy%20%5Cright%29%7Bdy%7D%7D&id=IvlH3) ![](https://g.yuque.com/gr/latex?f%7BY%7D(y)%20%3D%20%5Cint%7B-%20%5Cinfty%7D%5E%7B%2B%20%5Cinfty%7D%7Bf(x%2Cy)dx%7D#card=math&code=f%7BY%7D%28y%29%20%3D%20%5Cint_%7B-%20%5Cinfty%7D%5E%7B%2B%20%5Cinfty%7D%7Bf%28x%2Cy%29dx%7D&id=CY9A5)

(4) 条件概率密度:3.CS229-Math - 图729%20%3D%20%5Cfrac%7Bf%5Cleft(%20x%2Cy%20%5Cright)%7D%7Bf%7BY%7D%5Cleft(%20y%20%5Cright)%7D#card=math&code=f%7BX%7CY%7D%5Cleft%28%20x%20%5Cmiddle%7C%20y%20%5Cright%29%20%3D%20%5Cfrac%7Bf%5Cleft%28%20x%2Cy%20%5Cright%29%7D%7Bf%7BY%7D%5Cleft%28%20y%20%5Cright%29%7D&id=j7efb) ![](https://g.yuque.com/gr/latex?f%7BY%7CX%7D(y%7Cx)%20%3D%20%5Cfrac%7Bf(x%2Cy)%7D%7Bf%7BX%7D(x)%7D#card=math&code=f%7BY%7CX%7D%28y%7Cx%29%20%3D%20%5Cfrac%7Bf%28x%2Cy%29%7D%7Bf_%7BX%7D%28x%29%7D&id=Yf2uq)

4.常见二维随机变量的联合分布

(1) 二维均匀分布:3.CS229-Math - 图730%20%5Csim%20U(D)#card=math&code=%28x%2Cy%29%20%5Csim%20U%28D%29&id=Jz3SD) ,3.CS229-Math - 图731%20%3D%20%5Cbegin%7Bcases%7D%20%5Cfrac%7B1%7D%7BS(D)%7D%2C(x%2Cy)%20%5Cin%20D%20%5C%5C%20%20%200%2C%E5%85%B6%E4%BB%96%20%20%5Cend%7Bcases%7D#card=math&code=f%28x%2Cy%29%20%3D%20%5Cbegin%7Bcases%7D%20%5Cfrac%7B1%7D%7BS%28D%29%7D%2C%28x%2Cy%29%20%5Cin%20D%20%5C%5C%20%20%200%2C%E5%85%B6%E4%BB%96%20%20%5Cend%7Bcases%7D&id=l3R83)

(2) 二维正态分布:3.CS229-Math - 图732%5Csim%20N(%5Cmu%7B1%7D%2C%5Cmu%7B2%7D%2C%5Csigma%7B1%7D%5E%7B2%7D%2C%5Csigma%7B2%7D%5E%7B2%7D%2C%5Crho)#card=math&code=%28X%2CY%29%5Csim%20N%28%5Cmu%7B1%7D%2C%5Cmu%7B2%7D%2C%5Csigma%7B1%7D%5E%7B2%7D%2C%5Csigma%7B2%7D%5E%7B2%7D%2C%5Crho%29&id=VuKNx),3.CS229-Math - 图733%5Csim%20N(%5Cmu%7B1%7D%2C%5Cmu%7B2%7D%2C%5Csigma%7B1%7D%5E%7B2%7D%2C%5Csigma%7B2%7D%5E%7B2%7D%2C%5Crho)#card=math&code=%28X%2CY%29%5Csim%20N%28%5Cmu%7B1%7D%2C%5Cmu%7B2%7D%2C%5Csigma%7B1%7D%5E%7B2%7D%2C%5Csigma%7B2%7D%5E%7B2%7D%2C%5Crho%29&id=RmLga)

3.CS229-Math - 图734%20%3D%20%5Cfrac%7B1%7D%7B2%5Cpi%5Csigma%7B1%7D%5Csigma%7B2%7D%5Csqrt%7B1%20-%20%5Crho%5E%7B2%7D%7D%7D.%5Cexp%5Cleft%5C%7B%20%5Cfrac%7B-%201%7D%7B2(1%20-%20%5Crho%5E%7B2%7D)%7D%5Clbrack%5Cfrac%7B%7B(x%20-%20%5Cmu%7B1%7D)%7D%5E%7B2%7D%7D%7B%5Csigma%7B1%7D%5E%7B2%7D%7D%20-%202%5Crho%5Cfrac%7B(x%20-%20%5Cmu%7B1%7D)(y%20-%20%5Cmu%7B2%7D)%7D%7B%5Csigma%7B1%7D%5Csigma%7B2%7D%7D%20%2B%20%5Cfrac%7B%7B(y%20-%20%5Cmu%7B2%7D)%7D%5E%7B2%7D%7D%7B%5Csigma%7B2%7D%5E%7B2%7D%7D%5Crbrack%20%5Cright%5C%7D#card=math&code=f%28x%2Cy%29%20%3D%20%5Cfrac%7B1%7D%7B2%5Cpi%5Csigma%7B1%7D%5Csigma%7B2%7D%5Csqrt%7B1%20-%20%5Crho%5E%7B2%7D%7D%7D.%5Cexp%5Cleft%5C%7B%20%5Cfrac%7B-%201%7D%7B2%281%20-%20%5Crho%5E%7B2%7D%29%7D%5Clbrack%5Cfrac%7B%7B%28x%20-%20%5Cmu%7B1%7D%29%7D%5E%7B2%7D%7D%7B%5Csigma%7B1%7D%5E%7B2%7D%7D%20-%202%5Crho%5Cfrac%7B%28x%20-%20%5Cmu%7B1%7D%29%28y%20-%20%5Cmu%7B2%7D%29%7D%7B%5Csigma%7B1%7D%5Csigma%7B2%7D%7D%20%2B%20%5Cfrac%7B%7B%28y%20-%20%5Cmu%7B2%7D%29%7D%5E%7B2%7D%7D%7B%5Csigma%7B2%7D%5E%7B2%7D%7D%5Crbrack%20%5Cright%5C%7D&id=HaHT9)

5.随机变量的独立性和相关性

3.CS229-Math - 图7353.CS229-Math - 图736的相互独立:3.CS229-Math - 图737%20%3D%20F%7BX%7D%5Cleft(%20x%20%5Cright)F%7BY%7D%5Cleft(%20y%20%5Cright)#card=math&code=%5CLeftrightarrow%20F%5Cleft%28%20x%2Cy%20%5Cright%29%20%3D%20F%7BX%7D%5Cleft%28%20x%20%5Cright%29F%7BY%7D%5Cleft%28%20y%20%5Cright%29&id=xeCdO):

3.CS229-Math - 图738(离散型)
3.CS229-Math - 图739%20%3D%20f%7BX%7D%5Cleft(%20x%20%5Cright)f%7BY%7D%5Cleft(%20y%20%5Cright)#card=math&code=%5CLeftrightarrow%20f%5Cleft%28%20x%2Cy%20%5Cright%29%20%3D%20f%7BX%7D%5Cleft%28%20x%20%5Cright%29f%7BY%7D%5Cleft%28%20y%20%5Cright%29&id=foBpq)(连续型)

3.CS229-Math - 图7403.CS229-Math - 图741的相关性:

相关系数3.CS229-Math - 图742时,称3.CS229-Math - 图7433.CS229-Math - 图744不相关,
否则称3.CS229-Math - 图7453.CS229-Math - 图746相关

6.两个随机变量简单函数的概率分布

离散型: 3.CS229-Math - 图747%20%3D%20p%7B%7Bij%7D%7D%2CZ%20%3D%20g%5Cleft(%20X%2CY%20%5Cright)#card=math&code=P%5Cleft%28%20X%20%3D%20x%7Bi%7D%2CY%20%3D%20y%7Bi%7D%20%5Cright%29%20%3D%20p%7B%7Bij%7D%7D%2CZ%20%3D%20g%5Cleft%28%20X%2CY%20%5Cright%29&id=z3igM) 则:

3.CS229-Math - 图748%20%3D%20P%5Cleft%5C%7B%20g%5Cleft(%20X%2CY%20%5Cright)%20%3D%20z%7Bk%7D%20%5Cright%5C%7D%20%3D%20%5Csum%7Bg%5Cleft(%20x%7Bi%7D%2Cy%7Bi%7D%20%5Cright)%20%3D%20z%7Bk%7D%7D%5E%7B%7D%7BP%5Cleft(%20X%20%3D%20x%7Bi%7D%2CY%20%3D%20y%7Bj%7D%20%5Cright)%7D#card=math&code=P%28Z%20%3D%20z%7Bk%7D%29%20%3D%20P%5Cleft%5C%7B%20g%5Cleft%28%20X%2CY%20%5Cright%29%20%3D%20z%7Bk%7D%20%5Cright%5C%7D%20%3D%20%5Csum%7Bg%5Cleft%28%20x%7Bi%7D%2Cy%7Bi%7D%20%5Cright%29%20%3D%20z%7Bk%7D%7D%5E%7B%7D%7BP%5Cleft%28%20X%20%3D%20x%7Bi%7D%2CY%20%3D%20y_%7Bj%7D%20%5Cright%29%7D&id=oEWtE)

连续型: 3.CS229-Math - 图749%20%5Csim%20f%5Cleft(%20x%2Cy%20%5Cright)%2CZ%20%3D%20g%5Cleft(%20X%2CY%20%5Cright)#card=math&code=%5Cleft%28%20X%2CY%20%5Cright%29%20%5Csim%20f%5Cleft%28%20x%2Cy%20%5Cright%29%2CZ%20%3D%20g%5Cleft%28%20X%2CY%20%5Cright%29&id=acZLn)
则:

3.CS229-Math - 图750%20%3D%20P%5Cleft%5C%7B%20g%5Cleft(%20X%2CY%20%5Cright)%20%5Cleq%20z%20%5Cright%5C%7D%20%3D%20%5Ciint%7Bg(x%2Cy)%20%5Cleq%20z%7D%5E%7B%7D%7Bf(x%2Cy)dxdy%7D#card=math&code=F%7Bz%7D%5Cleft%28%20z%20%5Cright%29%20%3D%20P%5Cleft%5C%7B%20g%5Cleft%28%20X%2CY%20%5Cright%29%20%5Cleq%20z%20%5Cright%5C%7D%20%3D%20%5Ciint%7Bg%28x%2Cy%29%20%5Cleq%20z%7D%5E%7B%7D%7Bf%28x%2Cy%29dxdy%7D&id=aZy2T),![](https://g.yuque.com/gr/latex?f%7Bz%7D(z)%20%3D%20F’%7Bz%7D(z)#card=math&code=f%7Bz%7D%28z%29%20%3D%20F%27_%7Bz%7D%28z%29&id=LXPhk)

7.重要公式与结论

(1) 边缘密度公式: 3.CS229-Math - 图751%20%3D%20%5Cint%7B-%20%5Cinfty%7D%5E%7B%2B%20%5Cinfty%7D%7Bf(x%2Cy)dy%2C%7D#card=math&code=f%7BX%7D%28x%29%20%3D%20%5Cint%7B-%20%5Cinfty%7D%5E%7B%2B%20%5Cinfty%7D%7Bf%28x%2Cy%29dy%2C%7D&id=Mqe4m)
![](https://g.yuque.com/gr/latex?f
%7BY%7D(y)%20%3D%20%5Cint%7B-%20%5Cinfty%7D%5E%7B%2B%20%5Cinfty%7D%7Bf(x%2Cy)dx%7D#card=math&code=f%7BY%7D%28y%29%20%3D%20%5Cint_%7B-%20%5Cinfty%7D%5E%7B%2B%20%5Cinfty%7D%7Bf%28x%2Cy%29dx%7D&id=LvWT8)

(2) 3.CS229-Math - 图752%20%5Cin%20D%20%5Cright%5C%7D%20%3D%20%5Ciint%7BD%7D%5E%7B%7D%7Bf%5Cleft(%20x%2Cy%20%5Cright)%7Bdxdy%7D%7D#card=math&code=P%5Cleft%5C%7B%20%5Cleft%28%20X%2CY%20%5Cright%29%20%5Cin%20D%20%5Cright%5C%7D%20%3D%20%5Ciint%7BD%7D%5E%7B%7D%7Bf%5Cleft%28%20x%2Cy%20%5Cright%29%7Bdxdy%7D%7D&id=MTrRg)

(3) 若3.CS229-Math - 图753#card=math&code=%28X%2CY%29&id=adUP7)服从二维正态分布3.CS229-Math - 图754#card=math&code=N%28%5Cmu%7B1%7D%2C%5Cmu%7B2%7D%2C%5Csigma%7B1%7D%5E%7B2%7D%2C%5Csigma%7B2%7D%5E%7B2%7D%2C%5Crho%29&id=AtaYu)
则有:

  1. 3.CS229-Math - 图755%2CY%5Csim%20N(%5Cmu%7B2%7D%2C%5Csigma%7B2%7D%5E%7B2%7D).#card=math&code=X%5Csim%20N%5Cleft%28%20%5Cmu%7B1%7D%2C%5Csigma%7B1%7D%5E%7B2%7D%20%5Cright%29%2CY%5Csim%20N%28%5Cmu%7B2%7D%2C%5Csigma%7B2%7D%5E%7B2%7D%29.&id=CuRLT)
  2. 3.CS229-Math - 图7563.CS229-Math - 图757相互独立3.CS229-Math - 图758,即3.CS229-Math - 图7593.CS229-Math - 图760不相关。
  3. 3.CS229-Math - 图761#card=math&code=C%7B1%7DX%20%2B%20C%7B2%7DY%5Csim%20N%28C%7B1%7D%5Cmu%7B1%7D%20%2B%20C%7B2%7D%5Cmu%7B2%7D%2CC%7B1%7D%5E%7B2%7D%5Csigma%7B1%7D%5E%7B2%7D%20%2B%20C%7B2%7D%5E%7B2%7D%5Csigma%7B2%7D%5E%7B2%7D%20%2B%202C%7B1%7DC%7B2%7D%5Csigma%7B1%7D%5Csigma%7B2%7D%5Crho%29&id=ybexs)
  4. 3.CS229-Math - 图762关于3.CS229-Math - 图763的条件分布为: 3.CS229-Math - 图764%2C%5Csigma%7B1%7D%5E%7B2%7D(1%20-%20%5Crho%5E%7B2%7D))#card=math&code=N%28%5Cmu%7B1%7D%20%2B%20%5Crho%5Cfrac%7B%5Csigma%7B1%7D%7D%7B%5Csigma%7B2%7D%7D%28y%20-%20%5Cmu%7B2%7D%29%2C%5Csigma%7B1%7D%5E%7B2%7D%281%20-%20%5Crho%5E%7B2%7D%29%29&id=SnacX)
  5. 3.CS229-Math - 图765关于3.CS229-Math - 图766的条件分布为: 3.CS229-Math - 图767%2C%5Csigma%7B2%7D%5E%7B2%7D(1%20-%20%5Crho%5E%7B2%7D))#card=math&code=N%28%5Cmu%7B2%7D%20%2B%20%5Crho%5Cfrac%7B%5Csigma%7B2%7D%7D%7B%5Csigma%7B1%7D%7D%28x%20-%20%5Cmu%7B1%7D%29%2C%5Csigma%7B2%7D%5E%7B2%7D%281%20-%20%5Crho%5E%7B2%7D%29%29&id=hswRn)

(4) 若3.CS229-Math - 图7683.CS229-Math - 图769独立,且分别服从3.CS229-Math - 图770%2CN(%5Cmu%7B1%7D%2C%5Csigma%7B2%7D%5E%7B2%7D)%2C#card=math&code=N%28%5Cmu%7B1%7D%2C%5Csigma%7B1%7D%5E%7B2%7D%29%2CN%28%5Cmu%7B1%7D%2C%5Csigma%7B2%7D%5E%7B2%7D%29%2C&id=fkPEV)
则:3.CS229-Math - 图771%5Csim%20N(%5Cmu%7B1%7D%2C%5Cmu%7B2%7D%2C%5Csigma%7B1%7D%5E%7B2%7D%2C%5Csigma%7B2%7D%5E%7B2%7D%2C0)%2C#card=math&code=%5Cleft%28%20X%2CY%20%5Cright%29%5Csim%20N%28%5Cmu%7B1%7D%2C%5Cmu%7B2%7D%2C%5Csigma%7B1%7D%5E%7B2%7D%2C%5Csigma%7B2%7D%5E%7B2%7D%2C0%29%2C&id=ugOVm)

3.CS229-Math - 图772.#card=math&code=C%7B1%7DX%20%2B%20C%7B2%7DY%5Ctilde%7B%5C%20%7DN%28C%7B1%7D%5Cmu%7B1%7D%20%2B%20C%7B2%7D%5Cmu%7B2%7D%2CC%7B1%7D%5E%7B2%7D%5Csigma%7B1%7D%5E%7B2%7D%20C%7B2%7D%5E%7B2%7D%5Csigma%7B2%7D%5E%7B2%7D%29.&id=fz1oK)

(5) 若3.CS229-Math - 图7733.CS229-Math - 图774相互独立,3.CS229-Math - 图775#card=math&code=f%5Cleft%28%20x%20%5Cright%29&id=z2mu6)和3.CS229-Math - 图776#card=math&code=g%5Cleft%28%20x%20%5Cright%29&id=irwia)为连续函数, 则3.CS229-Math - 图777#card=math&code=f%5Cleft%28%20X%20%5Cright%29&id=GppbK)和3.CS229-Math - 图778#card=math&code=g%28Y%29&id=UyXQT)也相互独立。

随机变量的数字特征

1.数学期望

离散型:3.CS229-Math - 图779%20%3D%20%5Csum%7Bi%7D%5E%7B%7D%7Bx%7Bi%7Dp%7Bi%7D%7D#card=math&code=P%5Cleft%5C%7B%20X%20%3D%20x%7Bi%7D%20%5Cright%5C%7D%20%3D%20p%7Bi%7D%2CE%28X%29%20%3D%20%5Csum%7Bi%7D%5E%7B%7D%7Bx%7Bi%7Dp%7Bi%7D%7D&id=PSU1k);

连续型: 3.CS229-Math - 图780%2CE(X)%20%3D%20%5Cint%7B-%20%5Cinfty%7D%5E%7B%2B%20%5Cinfty%7D%7Bxf(x)dx%7D#card=math&code=X%5Csim%20f%28x%29%2CE%28X%29%20%3D%20%5Cint%7B-%20%5Cinfty%7D%5E%7B%2B%20%5Cinfty%7D%7Bxf%28x%29dx%7D&id=FJiHr)

性质:

(1) 3.CS229-Math - 图781%20%3D%20C%2CE%5Clbrack%20E(X)%5Crbrack%20%3D%20E(X)#card=math&code=E%28C%29%20%3D%20C%2CE%5Clbrack%20E%28X%29%5Crbrack%20%3D%20E%28X%29&id=feW6O)

(2) 3.CS229-Math - 图782%20%3D%20C%7B1%7DE(X)%20%2B%20C%7B2%7DE(Y)#card=math&code=E%28C%7B1%7DX%20%2B%20C%7B2%7DY%29%20%3D%20C%7B1%7DE%28X%29%20%2B%20C%7B2%7DE%28Y%29&id=i3nTr)

(3) 若3.CS229-Math - 图7833.CS229-Math - 图784独立,则3.CS229-Math - 图785%20%3D%20E(X)E(Y)#card=math&code=E%28XY%29%20%3D%20E%28X%29E%28Y%29&id=O9Joc)

(4)3.CS229-Math - 图786%20%5Cright%5Crbrack%5E%7B2%7D%20%5Cleq%20E(X%5E%7B2%7D)E(Y%5E%7B2%7D)#card=math&code=%5Cleft%5Clbrack%20E%28XY%29%20%5Cright%5Crbrack%5E%7B2%7D%20%5Cleq%20E%28X%5E%7B2%7D%29E%28Y%5E%7B2%7D%29&id=jGoGF)

2.方差3.CS229-Math - 图787%20%3D%20E%5Cleft%5Clbrack%20X%20-%20E(X)%20%5Cright%5Crbrack%5E%7B2%7D%20%3D%20E(X%5E%7B2%7D)%20-%20%5Cleft%5Clbrack%20E(X)%20%5Cright%5Crbrack%5E%7B2%7D#card=math&code=D%28X%29%20%3D%20E%5Cleft%5Clbrack%20X%20-%20E%28X%29%20%5Cright%5Crbrack%5E%7B2%7D%20%3D%20E%28X%5E%7B2%7D%29%20-%20%5Cleft%5Clbrack%20E%28X%29%20%5Cright%5Crbrack%5E%7B2%7D&id=x6xPV)

3.标准差3.CS229-Math - 图788%7D#card=math&code=%5Csqrt%7BD%28X%29%7D&id=vlNTz),

4.离散型:3.CS229-Math - 图789%20%3D%20%5Csum%7Bi%7D%5E%7B%7D%7B%5Cleft%5Clbrack%20x%7Bi%7D%20-%20E(X)%20%5Cright%5Crbrack%5E%7B2%7Dp%7Bi%7D%7D#card=math&code=D%28X%29%20%3D%20%5Csum%7Bi%7D%5E%7B%7D%7B%5Cleft%5Clbrack%20x%7Bi%7D%20-%20E%28X%29%20%5Cright%5Crbrack%5E%7B2%7Dp%7Bi%7D%7D&id=PlGD4)

5.连续型:3.CS229-Math - 图790%20%3D%20%7B%5Cint%7B-%20%5Cinfty%7D%5E%7B%2B%20%5Cinfty%7D%5Cleft%5Clbrack%20x%20-%20E(X)%20%5Cright%5Crbrack%7D%5E%7B2%7Df(x)dx#card=math&code=D%28X%29%20%3D%20%7B%5Cint%7B-%20%5Cinfty%7D%5E%7B%2B%20%5Cinfty%7D%5Cleft%5Clbrack%20x%20-%20E%28X%29%20%5Cright%5Crbrack%7D%5E%7B2%7Df%28x%29dx&id=przFC)

性质:

(1)3.CS229-Math - 图791%20%3D%200%2CD%5Clbrack%20E(X)%5Crbrack%20%3D%200%2CD%5Clbrack%20D(X)%5Crbrack%20%3D%200#card=math&code=%5C%20D%28C%29%20%3D%200%2CD%5Clbrack%20E%28X%29%5Crbrack%20%3D%200%2CD%5Clbrack%20D%28X%29%5Crbrack%20%3D%200&id=S5gre)

(2) 3.CS229-Math - 图7923.CS229-Math - 图793相互独立,则3.CS229-Math - 图794%20%3D%20D(X)%20%2B%20D(Y)#card=math&code=D%28X%20%5Cpm%20Y%29%20%3D%20D%28X%29%20%2B%20D%28Y%29&id=GJj7g)

(3)3.CS229-Math - 图795%20%3D%20C%7B1%7D%5E%7B2%7DD%5Cleft(%20X%20%5Cright)#card=math&code=%5C%20D%5Cleft%28%20C%7B1%7DX%20%2B%20C%7B2%7D%20%5Cright%29%20%3D%20C%7B1%7D%5E%7B2%7DD%5Cleft%28%20X%20%5Cright%29&id=abnTq)

(4) 一般有 3.CS229-Math - 图796%20%3D%20D(X)%20%2B%20D(Y)%20%5Cpm%202Cov(X%2CY)%20%3D%20D(X)%20%2B%20D(Y)%20%5Cpm%20%0A2%5Crho%5Csqrt%7BD(X)%7D%5Csqrt%7BD(Y)%7D#card=math&code=D%28X%20%5Cpm%20Y%29%20%3D%20D%28X%29%20%2B%20D%28Y%29%20%5Cpm%202Cov%28X%2CY%29%20%3D%20D%28X%29%20%2B%20D%28Y%29%20%5Cpm%20%0A2%5Crho%5Csqrt%7BD%28X%29%7D%5Csqrt%7BD%28Y%29%7D&id=Kc2kE)

(5)3.CS229-Math - 图797%20%3C%20E%5Cleft(%20X%20-%20C%20%5Cright)%5E%7B2%7D%2CC%20%5Cneq%20E%5Cleft(%20X%20%5Cright)#card=math&code=%5C%20D%5Cleft%28%20X%20%5Cright%29%20%3C%20E%5Cleft%28%20X%20-%20C%20%5Cright%29%5E%7B2%7D%2CC%20%5Cneq%20E%5Cleft%28%20X%20%5Cright%29&id=c3MTs)

(6)3.CS229-Math - 图798%20%3D%200%20%5CLeftrightarrow%20P%5Cleft%5C%7B%20X%20%3D%20C%20%5Cright%5C%7D%20%3D%201#card=math&code=%5C%20D%28X%29%20%3D%200%20%5CLeftrightarrow%20P%5Cleft%5C%7B%20X%20%3D%20C%20%5Cright%5C%7D%20%3D%201&id=GIev7)

6.随机变量函数的数学期望

(1) 对于函数3.CS229-Math - 图799#card=math&code=Y%20%3D%20g%28x%29&id=kqhRr)

3.CS229-Math - 图800为离散型:3.CS229-Math - 图801%20%3D%20%5Csum%7Bi%7D%5E%7B%7D%7Bg(x%7Bi%7D)p%7Bi%7D%7D#card=math&code=P%5C%7B%20X%20%3D%20x%7Bi%7D%5C%7D%20%3D%20p%7Bi%7D%2CE%28Y%29%20%3D%20%5Csum%7Bi%7D%5E%7B%7D%7Bg%28x%7Bi%7D%29p%7Bi%7D%7D&id=S9NaJ);

3.CS229-Math - 图802为连续型:3.CS229-Math - 图803%2CE(Y)%20%3D%20%5Cint%7B-%20%5Cinfty%7D%5E%7B%2B%20%5Cinfty%7D%7Bg(x)f(x)dx%7D#card=math&code=X%5Csim%20f%28x%29%2CE%28Y%29%20%3D%20%5Cint%7B-%20%5Cinfty%7D%5E%7B%2B%20%5Cinfty%7D%7Bg%28x%29f%28x%29dx%7D&id=St56A)

(2) 3.CS229-Math - 图804#card=math&code=Z%20%3D%20g%28X%2CY%29&id=y3s3c);3.CS229-Math - 图805%5Csim%20P%5C%7B%20X%20%3D%20x%7Bi%7D%2CY%20%3D%20y%7Bj%7D%5C%7D%20%3D%20p%7B%7Bij%7D%7D#card=math&code=%5Cleft%28%20X%2CY%20%5Cright%29%5Csim%20P%5C%7B%20X%20%3D%20x%7Bi%7D%2CY%20%3D%20y%7Bj%7D%5C%7D%20%3D%20p%7B%7Bij%7D%7D&id=RH4oE); 3.CS229-Math - 图806%20%3D%20%5Csum%7Bi%7D%5E%7B%7D%7B%5Csum%7Bj%7D%5E%7B%7D%7Bg(x%7Bi%7D%2Cy%7Bj%7D)p%7B%7Bij%7D%7D%7D%7D#card=math&code=E%28Z%29%20%3D%20%5Csum%7Bi%7D%5E%7B%7D%7B%5Csum%7Bj%7D%5E%7B%7D%7Bg%28x%7Bi%7D%2Cy%7Bj%7D%29p%7B%7Bij%7D%7D%7D%7D&id=ObxJB) 3.CS229-Math - 图807%5Csim%20f(x%2Cy)#card=math&code=%5Cleft%28%20X%2CY%20%5Cright%29%5Csim%20f%28x%2Cy%29&id=sSuCY);3.CS229-Math - 图808%20%3D%20%5Cint%7B-%20%5Cinfty%7D%5E%7B%2B%20%5Cinfty%7D%7B%5Cint%7B-%20%5Cinfty%7D%5E%7B%2B%20%5Cinfty%7D%7Bg(x%2Cy)f(x%2Cy)dxdy%7D%7D#card=math&code=E%28Z%29%20%3D%20%5Cint%7B-%20%5Cinfty%7D%5E%7B%2B%20%5Cinfty%7D%7B%5Cint%7B-%20%5Cinfty%7D%5E%7B%2B%20%5Cinfty%7D%7Bg%28x%2Cy%29f%28x%2Cy%29dxdy%7D%7D&id=BNopG)

7.协方差

3.CS229-Math - 图809%20%3D%20E%5Cleft%5Clbrack%20(X%20-%20E(X)(Y%20-%20E(Y))%20%5Cright%5Crbrack#card=math&code=Cov%28X%2CY%29%20%3D%20E%5Cleft%5Clbrack%20%28X%20-%20E%28X%29%28Y%20-%20E%28Y%29%29%20%5Cright%5Crbrack&id=uhU2W)

8.相关系数

3.CS229-Math - 图810%7D%7B%5Csqrt%7BD(X)%7D%5Csqrt%7BD(Y)%7D%7D#card=math&code=%5Crho_%7B%7BXY%7D%7D%20%3D%20%5Cfrac%7BCov%28X%2CY%29%7D%7B%5Csqrt%7BD%28X%29%7D%5Csqrt%7BD%28Y%29%7D%7D&id=Ym8jj),3.CS229-Math - 图811阶原点矩 3.CS229-Math - 图812#card=math&code=E%28X%5E%7Bk%7D%29&id=Mrw97);
3.CS229-Math - 图813阶中心矩 3.CS229-Math - 图814%5Crbrack%7D%5E%7Bk%7D%20%5Cright%5C%7D#card=math&code=E%5Cleft%5C%7B%20%7B%5Clbrack%20X%20-%20E%28X%29%5Crbrack%7D%5E%7Bk%7D%20%5Cright%5C%7D&id=iaETv)

性质:

(1)3.CS229-Math - 图815%20%3D%20Cov(Y%2CX)#card=math&code=%5C%20Cov%28X%2CY%29%20%3D%20Cov%28Y%2CX%29&id=nrnlf)

(2)3.CS229-Math - 图816%20%3D%20abCov(Y%2CX)#card=math&code=%5C%20Cov%28aX%2CbY%29%20%3D%20abCov%28Y%2CX%29&id=lG1VX)

(3)3.CS229-Math - 图817%20%3D%20Cov(X%7B1%7D%2CY)%20%2B%20Cov(X%7B2%7D%2CY)#card=math&code=%5C%20Cov%28X%7B1%7D%20%2B%20X%7B2%7D%2CY%29%20%3D%20Cov%28X%7B1%7D%2CY%29%20%2B%20Cov%28X%7B2%7D%2CY%29&id=oOWXy)

(4)3.CS229-Math - 图818%20%5Cright%7C%20%5Cleq%201#card=math&code=%5C%20%5Cleft%7C%20%5Crho%5Cleft%28%20X%2CY%20%5Cright%29%20%5Cright%7C%20%5Cleq%201&id=PQ63m)

(5) 3.CS229-Math - 图819%20%3D%201%20%5CLeftrightarrow%20P%5Cleft(%20Y%20%3D%20aX%20%2B%20b%20%5Cright)%20%3D%201#card=math&code=%5C%20%5Crho%5Cleft%28%20X%2CY%20%5Cright%29%20%3D%201%20%5CLeftrightarrow%20P%5Cleft%28%20Y%20%3D%20aX%20%2B%20b%20%5Cright%29%20%3D%201&id=Au1cr) ,其中3.CS229-Math - 图820

3.CS229-Math - 图821%20%3D%20-%201%20%5CLeftrightarrow%20P%5Cleft(%20Y%20%3D%20aX%20%2B%20b%20%5Cright)%20%3D%201#card=math&code=%5Crho%5Cleft%28%20X%2CY%20%5Cright%29%20%3D%20-%201%20%5CLeftrightarrow%20P%5Cleft%28%20Y%20%3D%20aX%20%2B%20b%20%5Cright%29%20%3D%201&id=KhEsd)
,其中3.CS229-Math - 图822

9.重要公式与结论

(1)3.CS229-Math - 图823%20%3D%20E(X%5E%7B2%7D)%20-%20E%5E%7B2%7D(X)#card=math&code=%5C%20D%28X%29%20%3D%20E%28X%5E%7B2%7D%29%20-%20E%5E%7B2%7D%28X%29&id=qAVUJ)

(2)3.CS229-Math - 图824%20%3D%20E(XY)%20-%20E(X)E(Y)#card=math&code=%5C%20Cov%28X%2CY%29%20%3D%20E%28XY%29%20-%20E%28X%29E%28Y%29&id=rUFts)

(3) 3.CS229-Math - 图825%20%5Cright%7C%20%5Cleq%201%2C#card=math&code=%5Cleft%7C%20%5Crho%5Cleft%28%20X%2CY%20%5Cright%29%20%5Cright%7C%20%5Cleq%201%2C&id=pwWT2)且 3.CS229-Math - 图826%20%3D%201%20%5CLeftrightarrow%20P%5Cleft(%20Y%20%3D%20aX%20%2B%20b%20%5Cright)%20%3D%201#card=math&code=%5Crho%5Cleft%28%20X%2CY%20%5Cright%29%20%3D%201%20%5CLeftrightarrow%20P%5Cleft%28%20Y%20%3D%20aX%20%2B%20b%20%5Cright%29%20%3D%201&id=BB5pN),其中3.CS229-Math - 图827

3.CS229-Math - 图828%20%3D%20-%201%20%5CLeftrightarrow%20P%5Cleft(%20Y%20%3D%20aX%20%2B%20b%20%5Cright)%20%3D%201#card=math&code=%5Crho%5Cleft%28%20X%2CY%20%5Cright%29%20%3D%20-%201%20%5CLeftrightarrow%20P%5Cleft%28%20Y%20%3D%20aX%20%2B%20b%20%5Cright%29%20%3D%201&id=U0rkG),其中3.CS229-Math - 图829

(4) 下面 5 个条件互为充要条件:

3.CS229-Math - 图830%20%3D%200#card=math&code=%5Crho%28X%2CY%29%20%3D%200&id=nThOs) 3.CS229-Math - 图831%20%3D%200#card=math&code=%5CLeftrightarrow%20Cov%28X%2CY%29%20%3D%200&id=RESOx) 3.CS229-Math - 图832%20%3D%20E(X)E(Y)#card=math&code=%5CLeftrightarrow%20E%28X%2CY%29%20%3D%20E%28X%29E%28Y%29&id=hSaW6) 3.CS229-Math - 图833%20%3D%20D(X)%20%2B%20D(Y)#card=math&code=%5CLeftrightarrow%20D%28X%20%2B%20Y%29%20%3D%20D%28X%29%20%2B%20D%28Y%29&id=lTrpV) 3.CS229-Math - 图834%20%3D%20D(X)%20%2B%20D(Y)#card=math&code=%5CLeftrightarrow%20%20D%28X%20-%20Y%29%20%3D%20D%28X%29%20%2B%20D%28Y%29&id=gvsk9)

注:3.CS229-Math - 图8353.CS229-Math - 图836独立为上述 5 个条件中任何一个成立的充分条件,但非必要条件。

数理统计的基本概念

1.基本概念

总体:研究对象的全体,它是一个随机变量,用3.CS229-Math - 图837表示。

个体:组成总体的每个基本元素。

简单随机样本:来自总体3.CS229-Math - 图8383.CS229-Math - 图839个相互独立且与总体同分布的随机变量3.CS229-Math - 图840,称为容量为3.CS229-Math - 图841的简单随机样本,简称样本。

统计量:设3.CS229-Math - 图842是来自总体3.CS229-Math - 图843的一个样本,3.CS229-Math - 图844#card=math&code=g%28X%7B1%7D%2CX%7B2%7D%5Ccdots%2CX%7Bn%7D%29&id=IeHZ3))是样本的连续函数,且3.CS229-Math - 图845#card=math&code=g%28%29&id=Q9Hbc)中不含任何未知参数,则称![](https://g.yuque.com/gr/latex?g(X%7B1%7D%2CX%7B2%7D%5Ccdots%2CX%7Bn%7D)#card=math&code=g%28X%7B1%7D%2CX%7B2%7D%5Ccdots%2CX_%7Bn%7D%29&id=DYu8U)为统计量。

样本均值:3.CS229-Math - 图846

样本方差:3.CS229-Math - 图847%7D%5E%7B2%7D#card=math&code=S%5E%7B2%7D%20%3D%20%5Cfrac%7B1%7D%7Bn%20-%201%7D%5Csum%7Bi%20%3D%201%7D%5E%7Bn%7D%7B%28X%7Bi%7D%20-%20%5Coverline%7BX%7D%29%7D%5E%7B2%7D&id=qWhrQ)

样本矩:样本3.CS229-Math - 图848阶原点矩:3.CS229-Math - 图849

样本3.CS229-Math - 图850阶中心矩:3.CS229-Math - 图851%7D%5E%7Bk%7D%2Ck%20%3D%201%2C2%2C%5Ccdots#card=math&code=B%7Bk%7D%20%3D%20%5Cfrac%7B1%7D%7Bn%7D%5Csum%7Bi%20%3D%201%7D%5E%7Bn%7D%7B%28X_%7Bi%7D%20-%20%5Coverline%7BX%7D%29%7D%5E%7Bk%7D%2Ck%20%3D%201%2C2%2C%5Ccdots&id=TMnH0)

2.分布

3.CS229-Math - 图852分布:3.CS229-Math - 图853#card=math&code=%5Cchi%5E%7B2%7D%20%3D%20X%7B1%7D%5E%7B2%7D%20%2B%20X%7B2%7D%5E%7B2%7D%20%2B%20%5Ccdots%20%2B%20X%7Bn%7D%5E%7B2%7D%5Csim%5Cchi%5E%7B2%7D%28n%29&id=JBVVz),其中![](https://g.yuque.com/gr/latex?X%7B1%7D%2CX%7B2%7D%5Ccdots%2CX%7Bn%7D%2C#card=math&code=X%7B1%7D%2CX%7B2%7D%5Ccdots%2CX_%7Bn%7D%2C&id=mhoP7)相互独立,且同服从3.CS229-Math - 图854#card=math&code=N%280%2C1%29&id=iR5de)

3.CS229-Math - 图855分布:3.CS229-Math - 图856#card=math&code=T%20%3D%20%5Cfrac%7BX%7D%7B%5Csqrt%7BY%2Fn%7D%7D%5Csim%20t%28n%29&id=R6646) ,其中3.CS229-Math - 图857%2CY%5Csim%5Cchi%5E%7B2%7D(n)%2C#card=math&code=X%5Csim%20N%5Cleft%28%200%2C1%20%5Cright%29%2CY%5Csim%5Cchi%5E%7B2%7D%28n%29%2C&id=m3qmn)且3.CS229-Math - 图8583.CS229-Math - 图859 相互独立。

3.CS229-Math - 图860分布:3.CS229-Math - 图861#card=math&code=F%20%3D%20%5Cfrac%7BX%2Fn%7B1%7D%7D%7BY%2Fn%7B2%7D%7D%5Csim%20F%28n%7B1%7D%2Cn%7B2%7D%29&id=MlCyB),其中3.CS229-Math - 图862%2CY%5Csim%5Cchi%5E%7B2%7D(n%7B2%7D)%2C#card=math&code=X%5Csim%5Cchi%5E%7B2%7D%5Cleft%28%20n%7B1%7D%20%5Cright%29%2CY%5Csim%5Cchi%5E%7B2%7D%28n_%7B2%7D%29%2C&id=ex8jz)且3.CS229-Math - 图8633.CS229-Math - 图864相互独立。

分位数:若3.CS229-Math - 图865%20%3D%20%5Calpha%2C#card=math&code=P%28X%20%5Cleq%20x%7B%5Calpha%7D%29%20%3D%20%5Calpha%2C&id=skIGW)则称![](https://g.yuque.com/gr/latex?x%7B%5Calpha%7D#card=math&code=x_%7B%5Calpha%7D&id=G810C)为3.CS229-Math - 图8663.CS229-Math - 图867分位数

3.正态总体的常用样本分布

(1) 设3.CS229-Math - 图868为来自正态总体3.CS229-Math - 图869#card=math&code=N%28%5Cmu%2C%5Csigma%5E%7B2%7D%29&id=sftCk)的样本,

3.CS229-Math - 图870%7D%5E%7B2%7D%2C%7D#card=math&code=%5Coverline%7BX%7D%20%3D%20%5Cfrac%7B1%7D%7Bn%7D%5Csum%7Bi%20%3D%201%7D%5E%7Bn%7DX%7Bi%7D%2CS%5E%7B2%7D%20%3D%20%5Cfrac%7B1%7D%7Bn%20-%201%7D%5Csum%7Bi%20%3D%201%7D%5E%7Bn%7D%7B%7B%28X%7Bi%7D%20-%20%5Coverline%7BX%7D%29%7D%5E%7B2%7D%2C%7D&id=jcZ3f)则:

  1. 3.CS229-Math - 图871%7B%5C%20%5C%20%7D#card=math&code=%5Coverline%7BX%7D%5Csim%20N%5Cleft%28%20%5Cmu%2C%5Cfrac%7B%5Csigma%5E%7B2%7D%7D%7Bn%7D%20%5Cright%29%7B%5C%20%5C%20%7D&id=Ssx1t)或者3.CS229-Math - 图872#card=math&code=%5Cfrac%7B%5Coverline%7BX%7D%20-%20%5Cmu%7D%7B%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%7Bn%7D%7D%7D%5Csim%20N%280%2C1%29&id=PpWvU)
  2. 3.CS229-Math - 图873S%5E%7B2%7D%7D%7B%5Csigma%5E%7B2%7D%7D%20%3D%20%5Cfrac%7B1%7D%7B%5Csigma%5E%7B2%7D%7D%5Csum%7Bi%20%3D%201%7D%5E%7Bn%7D%7B%7B(X%7Bi%7D%20-%20%5Coverline%7BX%7D)%7D%5E%7B2%7D%5Csim%5Cchi%5E%7B2%7D(n%20-%201)%7D#card=math&code=%5Cfrac%7B%28n%20-%201%29S%5E%7B2%7D%7D%7B%5Csigma%5E%7B2%7D%7D%20%3D%20%5Cfrac%7B1%7D%7B%5Csigma%5E%7B2%7D%7D%5Csum%7Bi%20%3D%201%7D%5E%7Bn%7D%7B%7B%28X%7Bi%7D%20-%20%5Coverline%7BX%7D%29%7D%5E%7B2%7D%5Csim%5Cchi%5E%7B2%7D%28n%20-%201%29%7D&id=feP5y)
  3. 3.CS229-Math - 图874%7D%5E%7B2%7D%5Csim%5Cchi%5E%7B2%7D(n)%7D#card=math&code=%5Cfrac%7B1%7D%7B%5Csigma%5E%7B2%7D%7D%5Csum%7Bi%20%3D%201%7D%5E%7Bn%7D%7B%7B%28X%7Bi%7D%20-%20%5Cmu%29%7D%5E%7B2%7D%5Csim%5Cchi%5E%7B2%7D%28n%29%7D&id=vo2C9)

4)3.CS229-Math - 图875#card=math&code=%7B%5C%20%5C%20%7D%5Cfrac%7B%5Coverline%7BX%7D%20-%20%5Cmu%7D%7BS%2F%5Csqrt%7Bn%7D%7D%5Csim%20t%28n%20-%201%29&id=oZxN6)

4.重要公式与结论

(1) 对于3.CS229-Math - 图876#card=math&code=%5Cchi%5E%7B2%7D%5Csim%5Cchi%5E%7B2%7D%28n%29&id=S6E0A),有3.CS229-Math - 图877)%20%3D%20n%2CD(%5Cchi%5E%7B2%7D(n))%20%3D%202n%3B#card=math&code=E%28%5Cchi%5E%7B2%7D%28n%29%29%20%3D%20n%2CD%28%5Cchi%5E%7B2%7D%28n%29%29%20%3D%202n%3B&id=A7O6P)

(2) 对于3.CS229-Math - 图878#card=math&code=T%5Csim%20t%28n%29&id=D4sHd),有3.CS229-Math - 图879%20%3D%200%2CD(T)%20%3D%20%5Cfrac%7Bn%7D%7Bn%20-%202%7D(n%20%3E%202)#card=math&code=E%28T%29%20%3D%200%2CD%28T%29%20%3D%20%5Cfrac%7Bn%7D%7Bn%20-%202%7D%28n%20%3E%202%29&id=O2kKf);

(3) 对于3.CS229-Math - 图880#card=math&code=F%5Ctilde%7B%5C%20%7DF%28m%2Cn%29&id=IZlj3),有 3.CS229-Math - 图881%2CF%7Ba%2F2%7D(m%2Cn)%20%3D%20%5Cfrac%7B1%7D%7BF%7B1%20-%20a%2F2%7D(n%2Cm)%7D%3B#card=math&code=%5Cfrac%7B1%7D%7BF%7D%5Csim%20F%28n%2Cm%29%2CF%7Ba%2F2%7D%28m%2Cn%29%20%3D%20%5Cfrac%7B1%7D%7BF%7B1%20-%20a%2F2%7D%28n%2Cm%29%7D%3B&id=JWh31)

(4) 对于任意总体3.CS229-Math - 图882,有 3.CS229-Math - 图883%20%3D%20E(X)%2CE(S%5E%7B2%7D)%20%3D%20D(X)%2CD(%5Coverline%7BX%7D)%20%3D%20%5Cfrac%7BD(X)%7D%7Bn%7D#card=math&code=E%28%5Coverline%7BX%7D%29%20%3D%20E%28X%29%2CE%28S%5E%7B2%7D%29%20%3D%20D%28X%29%2CD%28%5Coverline%7BX%7D%29%20%3D%20%5Cfrac%7BD%28X%29%7D%7Bn%7D&id=rEF9C)