C5W3 Quiz - Sequence models & Attention mechanism
Ans: False
Ans: A、B、C
Ans:A
Ans: A
Ans: A
Ans: A、D
False
Ans: True
Ans: A
Ans: B
Ans: A
- Consider using this encoder-decoder model for machine translation.
This model is a “conditional language model” in the sense that the encoder portion (shown in green) is modeling the probability of the input sentence xx.
Ans: True
- In beam search, if you increase the beam width BB, which of the following would you expect to be true? Check all that apply.
Ans: Beam search will run more slowly.
Beam search will use up more memory.
Beam search will generally find better solutions (i.e. do a better job maximizing P(y \mid x)P(y∣x))
- In machine translation, if we carry out beam search without using sentence normalization, the algorithm will tend to output overly short translations.
Ans: True
- Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip x to a text transcript y. Your algorithm uses beam search to try to find the value of y that maximizes P(y∣x).
On a dev set example, given an input audio clip, your algorithm outputs the transcript y^ = “I’m building an A Eye system in Silly con Valley.”, whereas a human gives a much superior transcript y* = “I’m building an AI system in Silicon Valley.”
According to your model,
P(y^|x) = 1.09*10^-7
P(y∗∣x) = 7.21∗10^−8
Would you expect increasing the beam width B to help correct this example?
Ans: No, because P(y∗∣x) ≤ P(y^∣x) indicates the error should be attributed to the RNN rather than to the search algorithm.
- Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, and now find that for the vast majority of examples on which your algorithm makes a mistake, P(y∗∣x) > P(y^∣x). This suggest you should focus your attention on improving the search algorithm.
Ans: True.
- Consider the attention model for machine translation. Further, here is the formula for α
. Which of the following statements about α are true? Check all that apply.
We expect α
∑tα
- The network learns where to “pay attention” by learning the values e
, which are computed using a small neural network:
We can’t replace s^{
True
- Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism), we expect the attention model to have the greatest advantage when:
The input sequence length Tx is large.
- Under the CTC model, identical repeated characters not separated by the “blank” character (_) are collapsed. Under the CTC model, what does the following string collapse to? coo_o_kkb_oooooookkk
coookkboooooookkk
- In trigger word detection, x^{
) is:
Features of the audio (such as spectrogram features) at time t.