import matplotlib.pyplot as plt
# prepare the training set
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
# initial guess of weight
w = 1.0
# define the model linear model y = w*x
def forward(x):
return x*w
#define the cost function MSE
def cost(xs, ys):
cost = 0
for x, y in zip(xs,ys):
y_pred = forward(x)
cost += (y_pred - y)**2
return cost / len(xs)
# define the gradient function gd
def gradient(xs,ys):
grad = 0
for x, y in zip(xs,ys):
grad += 2*x*(x*w - y)
return grad / len(xs)
epoch_list = []
cost_list = []
print('predict (before training)', 4, forward(4))
for epoch in range(100):
cost_val = cost(x_data, y_data)
grad_val = gradient(x_data, y_data)
w-= 0.01 * grad_val # 0.01 learning rate
print('epoch:', epoch, 'w=', w, 'loss=', cost_val)
epoch_list.append(epoch)
cost_list.append(cost_val)
print('predict (after training)', 4, forward(4))
plt.plot(epoch_list,cost_list)
plt.ylabel('cost')
plt.xlabel('epoch')
plt.show()
# Numpy
import numpy
# For plotting
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure
def forward(w, x):
return x * w
def cost(x_cor, y_cor, w):
y_hat = forward(w, x_cor)
loss = (y_hat - y_cor) ** 2
return loss.sum() / len(x_cor)
def gradient(x_cor, y_cor, w):
grad = 2 * x_cor * (w * x_cor - y_cor)
return grad.sum() / len(x_cor)
x_data = numpy.array([1.0, 2.0, 3.0])
y_data = numpy.array([2.0, 4.0, 6.0])
num_epochs = 100
lr = 0.01
w_train = numpy.array([1.0])
epoch_cor = []
loss_cor = []
for epoch in range(num_epochs):
mse_loss = cost(x_data, y_data, w_train)
loss_cor.append(mse_loss)
w_train -= lr * gradient(x_data, y_data, w_train)
epoch_cor.append(epoch + 1)
plt.figure()
plt.plot(epoch_cor, loss_cor, c='b')
plt.xlabel('Epoch')
plt.ylabel('Cost')
plt.show()
import matplotlib.pyplot as plt
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
w = 1.0
def forward(x):
return x*w
# calculate loss function
def loss(x, y):
y_pred = forward(x)
return (y_pred - y)**2
# define the gradient function sgd
def gradient(x, y):
return 2*x*(x*w - y)
epoch_list = []
loss_list = []
print('predict (before training)', 4, forward(4))
for epoch in range(100):
for x,y in zip(x_data, y_data):
grad = gradient(x,y)
w = w - 0.01*grad # update weight by every grad of sample of training set
print("\tgrad:", x, y,grad)
l = loss(x,y)
print("progress:",epoch,"w=",w,"loss=",l)
epoch_list.append(epoch)
loss_list.append(l)
print('predict (after training)', 4, forward(4))
plt.plot(epoch_list,loss_list)
plt.ylabel('loss')
plt.xlabel('epoch')
plt.show()
随机梯度下降法在神经网络中被证明是有效的。效率较低(时间复杂度较高),学习性能较好。
随机梯度下降法和梯度下降法的主要区别在于:
1、损失函数由cost()更改为loss()。cost是计算所有训练数据的损失,loss是计算一个训练函数的损失。对应于源代码则是少了两个for循环。
2、梯度函数gradient()由计算所有训练数据的梯度更改为计算一个训练数据的梯度。
3、本算法中的随机梯度主要是指,每次拿一个训练数据来训练,然后更新梯度参数。本算法中梯度总共更新100(epoch)x3 = 300次。梯度下降法中梯度总共更新100(epoch)次。
综合梯度下降和随机梯度下降算法,折中:batch(mini-patch)