# coding=utf-8import pandas as pdfrom matplotlib import pyplot as pltfile_path = "./PM2.5/BeijingPM20100101_20151231.csv"df = pd.read_csv(file_path)#把分开的时间字符串通过periodIndex的方法转化为pandas的时间类型period = pd.PeriodIndex(year=df["year"],month=df["month"],day=df["day"],hour=df["hour"],freq="H")df["datetime"] = period# print(df.head(10))#把datetime 设置为索引df.set_index("datetime",inplace=True)#进行降采样df = df.resample("7D").mean()print(df.head())#处理缺失数据,删除缺失数据# print(df["PM_US Post"])data =df["PM_US Post"]data_china = df["PM_Nongzhanguan"]print(data_china.head(100))#画图_x = data.index_x = [i.strftime("%Y%m%d") for i in _x]_x_china = [i.strftime("%Y%m%d") for i in data_china.index]print(len(_x_china),len(_x_china))_y = data.values_y_china = data_china.valuesplt.figure(figsize=(20,8),dpi=80)plt.plot(range(len(_x)),_y,label="US_POST",alpha=0.7)plt.plot(range(len(_x_china)),_y_china,label="CN_POST",alpha=0.7)plt.xticks(range(0,len(_x_china),10),list(_x_china)[::10],rotation=45)plt.legend(loc="best")plt.show()