k-means其实包含两层内容:
K : 初始中心点个数(计划聚类数)
means:求中心点到其他数据点距离的平均值

1 k-means聚类步骤

  • 1、随机设置K个特征空间内的点作为初始的聚类中心
  • 2、对于其他每个点计算到K个中心的距离,未知的点选择最近的一个聚类中心点作为标记类别
  • 3、接着对着标记的聚类中心之后,重新计算出每个聚类的新中心点(平均值)
  • 4、如果计算得出的新中心点与原中心点一样(质心不再移动),那么结束,否则重新进行第二步过程

通过下图解释实现流程:K-means过程分析.png
k聚类动态效果图kmeans_dynamic.png

2 案例练习

  • 案例:kmeans_demo1.png

1、随机设置K个特征空间内的点作为初始的聚类中心(本案例中设置p1和p2)kmeans_demo2.png
2、对于其他每个点计算到K个中心的距离,未知的点选择最近的一个聚类中心点作为标记类别kmeans_demo3.pngkmeans_demo4.png
3、接着对着标记的聚类中心之后,重新计算出每个聚类的新中心点(平均值)kmeans_demo5.png
4、如果计算得出的新中心点与原中心点一样(质心不再移动),那么结束,否则重新进行第二步过程【经过判断,需要重复上述步骤,开始新一轮迭代】kmeans_demo6.pngkmeans_demo7.png
5、当每次迭代结果不变时,认为算法收敛,聚类完成,K-Means一定会停下,不可能陷入一直选质心的过程。kmeans_demo8.png

3 小结

流程:

  • 事先确定常数K,常数K意味着最终的聚类类别数;
  • 首先随机选定初始点为质心,并通过计算每一个样本与质心之间的相似度(这里为欧式距离),将样本点归到最相似的类中,
  • 接着,重新计算每个类的质心(即为类中心),重复这样的过程,直到质心不再改变
  • 最终就确定了每个样本所属的类别以及每个类的质心。

注意:

  • 由于每次都要计算所有的样本与每一个质心之间的相似度,故在大规模的数据集上,K-Means算法的收敛速度比较慢。