1 sklearn模型的保存和加载API
from sklearn.externals import joblib
- 保存:joblib.dump(estimator, ‘test.pkl’)
加载:estimator = joblib.load(‘test.pkl’)
2 线性回归的模型保存加载案例
def load_dump_demo():"""线性回归:岭回归:return:"""# 1.获取数据data = load_boston()# 2.数据集划分x_train, x_test, y_train, y_test = train_test_split(data.data, data.target, random_state=22)# 3.特征工程-标准化transfer = StandardScaler()x_train = transfer.fit_transform(x_train)x_test = transfer.fit_transform(x_test)# 4.机器学习-线性回归(岭回归)# # 4.1 模型训练# estimator = Ridge(alpha=1)# estimator.fit(x_train, y_train)## # 4.2 模型保存# joblib.dump(estimator, "./data/test.pkl")# 4.3 模型加载estimator = joblib.load("./data/test.pkl")# 5.模型评估# 5.1 获取系数等值y_predict = estimator.predict(x_test)print("预测值为:\n", y_predict)print("模型中的系数为:\n", estimator.coef_)print("模型中的偏置为:\n", estimator.intercept_)# 5.2 评价# 均方误差error = mean_squared_error(y_test, y_predict)print("误差为:\n", error)
