1 索引概述
MySQL官方对索引的定义为:索引(index)是帮助MySQL高效获取数据的数据结构
索引的本质:索引是数据结构。你可以理解为“排好序的快速查找数据结构”,满足特定查询算法。
索引是在存储引擎中实现的,不同的存储引擎,索引的支持不同。
2 优点
- 降低数据库IO成本,提高数据检索的效率
- 创建唯一索引,可以保证数据库表中的每一行数据的唯一性;
- 加速表和表之间的连接。提高查询速度;
- 在使用分组和排序子句进行数据检索时,同样可以显著减少查询中分组和排序的时间;
通过使用索引,可以在查询的过程中,使用优化隐藏器,提高系统的性能。
3 缺点
创建索引和维护索引要耗费时间,并随着数据量增加,所耗费的时间也会增加;
- 索引需要占用磁盘空间,除了数据表占用的数据空间外,每一个索引都会占据一定的物理空间,如果要建立聚簇索引,那么需要的空间就会更大。
- 索引降低了更新表的速度。因为堆数据的增删修,索引都要动态的维护,大大的降低数据的写入速度。
4 索引数据结构类型
三种常见、也比较简单的数据结构,它们分别是哈希表、有序数组和搜索树4.1 哈希表
哈希表是一种以键-值(key-value)存储数据的结构,我们只要输入待查找的值即key,就可以找到其对应的值即Value。哈希的思路很简单,把值放在数组里,用一个哈希函数把key换算成一个确定的位置,然后把value放在数组的这个位置。
不可避免地,多个key值经过哈希函数的换算,会出现同一个值的情况。处理这种情况的一种方法是,拉出一个链表。
User2和User4根据身份证号算出来的值都是N,但没关系,后面还跟了一个链表。假设,这时候你要查ID_card_n2对应的名字是什么,处理步骤就是:首先,将ID_card_n2通过哈希函数算出N;然后,按顺序遍历,找到User2。
图中四个ID_card_n的值并不是递增的,这样做的好处是增加新的User时速度会很快,只需要往后追加。但缺点是,因为不是有序的,所以哈希索引做区间查询的速度是很慢的。
你可以设想下,如果你现在要找身份证号在[ID_card_X, ID_card_Y]这个区间的所有用户,就必须全部扫描一遍了。
哈希表这种结构适用于只有等值查询的场景,比如Memcached及其他一些NoSQL引擎。
4.2 有序数组
而有序数组在等值查询和范围查询场景中的性能就都非常优秀。还是上面这个根据身份证号查名字的例子,如果我们使用有序数组来实现的话,示意图如下所示:
数组就是按照身份证号递增的顺序保存的。这时候如果你要查ID_card_n2对应的名字,用二分法就可以快速得到,这个时间复杂度是O(log(N))。
如果仅仅看查询效率,有序数组就是最好的数据结构了。但是,在需要更新数据的时候就麻烦了,你往中间插入一个记录就必须得挪动后面所有的记录,成本太高。
所以,有序数组索引只适用于静态存储引擎,比如你要保存的是2017年某个城市的所有人口信息,这类不会再修改的数据。
4.3 搜索树
二叉搜索树也是课本里的经典数据结构了。还是上面根据身份证号查名字的例子,如果我们用二叉搜索树来实现的话,示意图如下所示:
B-Tree 是最常用的用于索引的数据结构。因为它们是时间复杂度低, 查找、删除、插入操作都可以可以在对数时间内完成。另外一个重要原因存储在B-Tree中的数据是有序的。数据库管理系统(RDBMS)通常决定索引应该用哪些数据结构。但是,在某些情况下,你在创建索引时可以指定索引要使用的数据结构。
5 如何合理的建立索引
5.1 应该创建索引的
索引是建立在数据库表中的某些列的上面。在创建索引的时候,应该考虑在哪些列上可以创建索引,在哪些列上不能创建索引。一般来说,应该在这些列上创建索引:
- 在经常需要搜索的列上,可以加快搜索的速度;(字段的使用频率)
- 在作为主键的列上,强制该列的唯一性和组织表中数据的排列结构;在经常用在连接的列上,这些列主要是一些外键,可以加快连接的速度;
- 在经常需要根据范围进行搜索的列上创建索引,因为索引已经排序,其指定的范围是连续的;
- 在经常需要排序的列上创建索引,因为索引已经排序,这样查询可以利用索引的排序,加快排序查询时间;
- 在经常使用在WHERE子句中的列上面创建索引,加快条件的判断速度。
在经常用在连接的列上,这些列主要是一些外键,可以加快连接的速度;
5.2 不应该创建索引的
同样,对于有些列不应该创建索引。一般来说,不应该创建索引的的这些列具有下列特点:
对于那些在查询中很少使用或者参考的列不应该创建索引。这是因为,既然这些列很少使用到,因此有索引或者无索引,并不能提高查询速度。相反,由于增加了索引,反而降低了系统的维护速度和增大了空间需求。
- 对于那些只有很少数据值的列也不应该增加索引。这是因为,由于这些列的取值很少,例如人事表的性别列,在查询的结果中,结果集的数据行占了表中数据行的很大比例,即需要在表中搜索的数据行的比例很大。增加索引,并不能明显加快检索速度。
- 对于那些定义为text, image和bit数据类型的列不应该增加索引。这是因为,这些列的数据量要么相当大,要么取值很少。
- 当修改性能远远大于检索性能时,不应该创建索引。这是因为,修改性能和检索性能是互相矛盾的。当增加索引时,会提高检索性能,但是会降低修改性能。当减少索引时,会提高修改性能,降低检索性能。因此,当修改性能远远大于检索性能时,不应该创建索引。
5.3 联合索引是什么?为什么需要注意联合索引中的顺序
MySQL可以使用多个字段同时建立一个索引,叫做联合索引.在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引.
具体原因为:
MySQL使用索引时需要索引有序,假设现在建立了”name,age,school”的联合索引,那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序.
当进行查询时,此时索引仅仅按照name严格有序,因此必须首先使用name字段进行等值查询,之后对于匹配到的列而言,其按照age字段严格有序,此时可以使用age字段用做索引查找,,,以此类推.因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面.此外可以根据特例的查询或者表结构进行单独的调整.6 索引的类型
根据数据库的功能,可以在数据库设计器中创建三种索引:唯一索引、主键索引和聚集索引。6.1 唯一索引
唯一索引是不允许其中任何两行具有相同索引值的索引。
当现有数据中存在重复的键值时,大多数数据库不允许将新创建的唯一索引与表一起保存。数据库还可能防止添加将在表中创建重复键值的新数据。例如,如果在employee表中职员的姓(lname)上创建了唯一索引,则任何两个员工都不能同姓。6.2 主键索引
数据库表经常有一列或列组合,其值唯一标识表中的每一行。该列称为表的主键。
在数据库关系图中为表定义主键将自动创建主键索引,主键索引是唯一索引的特定类型。该索引要求主键中的每个值都唯一。当在查询中使用主键索引时,它还允许对数据的快速访问。6.3 聚集索引
在聚集索引中,表中行的物理顺序与键值的逻辑(索引)顺序相同。一个表只能包含一个聚集索引。
如果某索引不是聚集索引,则表中行的物理顺序与键值的逻辑顺序不匹配。与非聚集索引相比,聚集索引通常提供更快的数据访问速度。7 局部性原理与磁盘预读
由于存储介质的特性,磁盘本身存取就比主存慢很多,再加上机械运动耗费,磁盘的存取速度往往是主存的几百分分之一,因此为了提高效率,要尽量减少磁盘I/O。为了达到这个目的,磁盘往往不是严格按需读取,而是每次都会预读,即使只需要一个字节,磁盘也会从这个位置开始,顺序向后读取一定长度的数据放入内存。这样做的理论依据是计算机科学中著名的局部性原理:当一个数据被用到时,其附近的数据也通常会马上被使用。程序运行期间所需要的数据通常比较集中。
由于磁盘顺序读取的效率很高(不需要寻道时间,只需很少的旋转时间),因此对于具有局部性的程序来说,预读可以提高I/O效率。
预读的长度一般为页(page)的整倍数。页是计算机管理存储器的逻辑块,硬件及操作系统往往将主存和磁盘存储区分割为连续的大小相等的块,每个存储块称为一页(在许多操作系统中,页得大小通常为4k),主存和磁盘以页为单位交换数据。当程序要读取的数据不在主存中时,会触发一个缺页异常,此时系统会向磁盘发出读盘信号,磁盘会找到数据的起始位置并向后连续读取一页或几页载入内存中,然后异常返回,程序继续运行。