1 介绍
ThreadLocal解决线程局部变量统一定义问题,多线程数据不能共享。(InheritableThreadLocal特例除外)不能解决并发问题。解决了:基于类级别的变量定义,每一个线程单独维护自己线程内的变量值(存、取、删的功能)
主要方法:
2. ThreadLocal的内部结构
2.1 常见的误解
通常,如果我们不去看源代码的话,我猜ThreadLocal是这样子设计的:每个ThreadLocal类都创建一个Map,然后用线程的ID threadID作为Map的key,要存储的局部变量作为Map的value,这样就能达到各个线程的局部变量隔离的效果。这是最简单的设计方法,JDK最早期的ThreadLocal就是这样设计的。
2.2 核心结构
但是,JDK后面优化了设计方案,现时JDK8 ThreadLocal的设计是:每个Thread维护一个ThreadLocalMap哈希表,这个哈希表的key是ThreadLocal实例本身,value才是真正要存储的值Object。
- (1) 每个Thread线程内部都有一个Map (ThreadLocalMap)
- (2) Map里面存储ThreadLocal对象(key)和线程的变量副本(value)
- (3)Thread内部的Map是由ThreadLocal维护的,由ThreadLocal负责向map获取和设置线程的变量值。
(4)对于不同的线程,每次获取副本值时,别的线程并不能获取到当前线程的副本值,形成了副本的隔离,互不干扰。
2.3 这样设计的好处
这个设计与我们一开始说的设计刚好相反,这样设计有如下两个优势:
(1) 这样设计之后每个Map存储的Entry数量就会变少,因为之前的存储数量由Thread的数量决定,现在是由ThreadLocal的数量决定。
- (2) 当Thread销毁之后,对应的ThreadLocalMap也会随之销毁,能减少内存的使用。
3 源码解析
3.1 线程唯一标识符
通过上面的介绍,我们可以获知ThreadLocal是以ThreadLocalMap存放key-value形式,而key值又是thread线程标识符,一堆整数。那么这串数字一定是通过某种算法得出,我们来看下面这个例子:
/**
* 生成每个线程唯一的局部标识符
*/
public class ThreadId {
// Atomic integer containing the next thread ID to be assigned
private static final AtomicInteger nextId = new AtomicInteger(0);
// Thread local variable containing each thread's ID
private static final ThreadLocal<Integer> threadId = new ThreadLocal<Integer>() {
@Override
protected Integer initialValue() {
return nextId.getAndIncrement();
}
};
// Returns the current thread's unique ID, assigning it if necessary
public static int get() {
return threadId.get();
}
public static void main(String[] args) {
for (int i = 0; i < 5; i++) {
new Thread(new Runnable() {
public void run() {
System.out.print(threadId.get());
}
}).start();
}
}
}
运行后得到结果:
01234
而在源码中,则是这样写的。
// 线程标识符HashCode
private final int threadLocalHashCode = nextHashCode();
// 创建一个原子数
private static AtomicInteger nextHashCode =
new AtomicInteger();
private static final int HASH_INCREMENT = 0x61c88647;
private static int nextHashCode() {
return nextHashCode.getAndAdd(HASH_INCREMENT);
}
思考:如果不通过类调用,hashcode会是什么?
public class TreadLocalHashCode {
// 线程标识符HashCode
private final int threadLocalHashCode = nextHashCode();
// 创建一个原子数
private static AtomicInteger nextHashCode =
new AtomicInteger();
private static final int HASH_INCREMENT = 0x61c88647;
private static int nextHashCode() {
return nextHashCode.getAndAdd(HASH_INCREMENT);
}
@Test
public void test(){
TreadLocalHashCode treadLocalHashCode =new TreadLocalHashCode();
System.out.println(threadLocalHashCode);
System.out.println(treadLocalHashCode.threadLocalHashCode);
System.out.println(treadLocalHashCode.threadLocalHashCode & 15);
}
}
结果:
0
1640531527
7
3.2 源码
3.2.1 存储结构
上面已经讲过,其实就是一个map,但这个map又和Map有不同之处,ThreadLocalMap具备了键值对的特性,但没有其底层数组的数据结构。
// 键值对实体的存储结构
// 如果key为null,(entry.get() == null)表示key不再被引用,表示ThreadLocal对象被回收
// 因此这时候entry也可以从table从清除。
static class Entry extends WeakReference<ThreadLocal<?>> {
/** The value associated with this ThreadLocal. */
// 当前线程关联的value,这个value并没有用弱引用追踪
Object value;
/*
* 构造键值对
* k作key,v作value
* 作为key的ThreadLocal会被包装为一个弱引用
*/
Entry(ThreadLocal<?> k, Object v) {
super(k);
value = v;
}
}
引用名词说明
类型 | 回收时间 | 应用场景 |
---|---|---|
强引用 | 一直存活,除非GC Roots不可达 | 所有程序的场景,基本对象,自定义对象等 |
软引用 | 内存不足时会被回收 | 一般用在对内存非常敏感的资源上,用作缓存的场景比较多,例如:网页缓存、图片缓存 |
弱引用 | 只能存活到下一次GC前 | 生命周期很短的对象,例如ThreadLocal中的Key。 |
虚引用 | 随时会被回收, 创建了可能很快就会被回收 | 可能被JVM团队内部用来跟踪JVM的垃圾回收活动 |
3.2.2 为什么要弱引用
ThreadLocal存储就是一个线程ID,如果线程销毁了,但是这个线程ID依然储存着,那么节点在GC分析中一直处于可达状态,没办法被回收,而程序本身也无法判断是否可以清理节点。
3.2.3 类成员变量与相应方法
- 成员变量 ```java // Map初始容量,必须为2的冪 private static final int INITIAL_CAPACITY = 16;
// 存储Map中的键值对实体 // 数组长度必须是2的冥 private Entry[] table;
// Map元素数量,可以用于判断table当前使用量是否超过负因子 private int size = 0;
// 扩容阙值,默认为0 private int threshold;
- 方法
```java
// 设置resize阈值以维持最坏2/3的装载因子
private void setThreshold(int len) {
threshold = len * 2 / 3;
}
// 哈希值发生冲突时,计算下一个哈希值。此处使用线性探测寻址,只是简单地将索引增一。
private static int nextIndex(int i, int len) {
// 如果索引增一后越界,则返回到下标0的地方,循环进行
return ((i + 1 < len) ? i + 1 : 0);
}
// 线性探测,但是逆方向进行,即向前遍历,查找索引上一个索引
private static int prevIndex(int i, int len) {
return ((i - 1 >= 0) ? i - 1 : len - 1);
}
3.2.4 构造函数
重点看一下上面构造函数中的int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);这一行代码。
对于2的幂作为模数取模,可以用&(2n-1)来替代%2n,位运算比取模效率高很多。至于为什么,因为对2^n取模,只要不是低n位对结果的贡献显然都是0,会影响结果的只能是低n位。
// 初始化map,并存储键值对<firstKey, firstValue>
// 构造一个包含firstKey和firstValue的map。
// ThreadLocalMap是惰性构造的,所以只有当至少要往里面放一个元素的时候才会构建它。
ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
// 初始化table数组
table = new Entry[INITIAL_CAPACITY];
// 计算索引,用firstKey的threadLocalHashCode与初始大小16取模得到哈希值
int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
// 设置值
table[i] = new Entry(firstKey, firstValue);
// 设置节点表大小为1
size = 1;
// 设置阈值
setThreshold(INITIAL_CAPACITY);
}
3.2.5 哈希函数
// 0x61c88647为斐波那契散列乘数,哈希得到的结果会比较分散
/*
* HASH_INCREMENT是一个哈希魔数
*
* 观察如下代码:
* int s = 0;
* double n = 4;
* int Max = (int) Math.pow(2, n);
*
* for(int i=s; i<Max+s; i++){
* System.out.println(i*HASH_INCREMENT & (Max-1));
* }
* 这将 随机-均匀 产生 [0,Max-1] 这 Max 个数字。
* 而且,改变s的值,将产生不同的序列
*
* 这与伪随机数的生成原理很像
*/
private static final int HASH_INCREMENT = 0x61c88647;
// 原子计数器自增
private static int nextHashCode() {
return nextHashCode.getAndAdd(HASH_INCREMENT);
}
3.2.6 get方法
// 返回当前ThreadLocal对象关联的值
public T get() {
// 返回当前ThreadLocal所在的线程
Thread t = Thread.currentThread();
// 返回当前线程t持有的map
ThreadLocalMap map = getMap(t);
// 如果map不为null,返回其键值对中保存的calue
if (map != null) {
ThreadLocalMap.Entry e = map.getEntry(this);
if (e != null) {
@SuppressWarnings("unchecked")
T result = (T)e.value;
return result;
}
}
// 如果map为空,或者map不空,但是还没有存储当前的ThreadLocalMap对象,则执行以下逻辑
/*
* 初始化map,并存储键值对<key, value>,最后返回value
* 其中,key是当前的ThreadLocal对象,value是为当前的ThreadLocal对象关联的初值
*/
return setInitialValue();
}
// 初始化map,并存储键值对<key, value>,最后返回value
// 其中,key是当前的ThreadLocal对象,value是为当前的ThreadLocal对象关联的初值
private T setInitialValue() {
// 获取为ThreadLocal对象设置关联的初值
T value = initialValue();
Thread t = Thread.currentThread();
// 返回当前线程t持有的map
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
// 为当前线程初始化map,并存储键值对<t, value>
createMap(t, value);
// 如果是TerminatingThreadLocal的ThreadLocal,需要将其注册到TerminatingThreadLocal的静态容器中以便后续处理
// if(this instanceof TerminatingThreadLocal) {
// TerminatingThreadLocal.register((TerminatingThreadLocal<?>) this);
// }
return value;
}
// 为当前线程初始化map,并存储键值对<this, firstValue>
void createMap(Thread t, T firstValue) {
t.threadLocals = new ThreadLocalMap(this, firstValue);
}
// 返回当前线程thread持有的map
ThreadLocalMap getMap(Thread t) {
return t.threadLocals;
}
// 类似HashMap。
// 进行元素存取时,要清理遇到的垃圾值,且合并原先紧密相邻的元素(除去垃圾值会造成新空槽)
static class ThreadLocalMap {
// 省略多余代码
// 返回key关联的键值对实体
private Entry getEntry(ThreadLocal<?> key) {
int i = key.threadLocalHashCode & (table.length - 1);
Entry e = table[i];
if (e != null && e.get() == key)
return e;
else
// 从i开始向后遍历找到键值对实体
return getEntryAfterMiss(key, i, e);
}
// 从i开始向后遍历找到键值对实体
private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) {
Entry[] tab = table;
int len = tab.length;
// 基于线性探测法不断向后探测直到遇到空entry。
while (e != null) {
ThreadLocal<?> k = e.get();
if (k == key)
return e;
// 遇到了垃圾值
if (k == null)
// 从索引i开始,遍历一段【连续】的元素,清理其中的垃圾值,并使各元素排序更紧凑
// 该entry对应的ThreadLocal已经被回收,调用expungeStaleEntry来清理无效的entry
expungeStaleEntry(i);
else
i = nextIndex(i, len);
e = tab[i];
}
return null;
}
/*
* 从索引staleSlot开始,遍历一段【连续】的元素,清理其中的垃圾值,并使各元素排序更紧凑
* 返回值是那个终止遍历过程的空槽下标
*
* 执行过程:
* 1. 清理staleSlot中的垃圾值
* 2. 遍历staleSlot后面的元素,直到遇见Entry数组中的空槽(即tab[i]==null)才停止。遍历过程中:
* 2.1 清理遇到的垃圾值
* 2.2 遇到“错位”的元素,将其向前放置在离“理想位置”最近的地方
* 换句话说,经过2.2的操作后,从“理想位置”出发查找某个元素,只要该元素是存在的,
* 那么在找到它的过程中,路过的Entry元素是连成一片的。
* 理解这一点很重要,这是理解set方法的基础之一。
*/
private int expungeStaleEntry(int staleSlot) {
Entry[] tab = table;
int len = tab.length;
// expunge entry at staleSlot
// 索引staleSlot处本身标识的就是一个垃圾值,所以需要首先清理掉
// 因为entry对应的ThreadLocal已经被回收,value设为null,显式断开强引用
tab[staleSlot].value = null;
// 显式设置该entry为null,以便垃圾回收
tab[staleSlot] = null;
// size减1,置空后table的被使用量减1
size--;
// Rehash until we encounter null
Entry e;
int i;
// 继续往后遍历连续的Entry数组,直到遇见一个空槽后停止遍历
for (i = nextIndex(staleSlot, len);
(e = tab[i]) != null;
i = nextIndex(i, len)) {
ThreadLocal<?> k = e.get();
// 如果当前Entry已经不包含ThreadLocal,说明这是个垃圾值,需要清理
if (k == null) {
e.value = null;
tab[i] = null;
size--;
} else {
// 该ThreadLocal对象的“理想位置”
// 对于还没有被回收的情况,需要做一次rehash。
// 如果对应的ThreadLocal的ID对len取模出来的索引h不为当前位置i,
// 则从h向后线性探测到第一个空的slot,把当前的entry给挪过去。
int h = k.threadLocalHashCode & (len - 1);
// 遇到“错位”的元素
if (h != i) {
// 将当前位置置空
tab[i] = null;
// Unlike Knuth 6.4 Algorithm R, we must scan until
// null because multiple entries could have been stale.
// 将其向前放置在离“理想位置”最近的地方
/*
* 在原代码的这里有句注释值得一提,原注释如下:
*
* Unlike Knuth 6.4 Algorithm R, we must scan until
* null because multiple entries could have been stale.
*
* 这段话提及了Knuth高德纳的著作TAOCP(《计算机程序设计艺术》)的6.4章节(散列)
* 中的R算法。R算法描述了如何从使用线性探测的散列表中删除一个元素。
* R算法维护了一个上次删除元素的index,当在非空连续段中扫到某个entry的哈希值取模后的索引
* 还没有遍历到时,会将该entry挪到index那个位置,并更新当前位置为新的index,
* 继续向后扫描直到遇到空的entry。
*
* ThreadLocalMap因为使用了弱引用,所以其实每个slot的状态有三种也即
* 有效(value未回收),无效(value已回收),空(entry==null)。
* 正是因为ThreadLocalMap的entry有三种状态,所以不能完全套高德纳原书的R算法。
*
* 因为expungeStaleEntry函数在扫描过程中还会对无效slot清理将之转为空slot,
* 如果直接套用R算法,可能会出现具有相同哈希值的entry之间断开(中间有空entry)。
*/
while (tab[h] != null)
h = nextIndex(h, len);
// 将该ThreadLocal对象放进去
tab[h] = e;
/* 这一堆操作目的是让元素存储下标更接近其计算出的哈希值 */
}
}
}
// 返回staleSlot之后第一个空的slot索引
return i;
}
}
3.2.7 set方法
// 为当前ThreadLocal对象关联value值
public void set(T value) {
// 返回当前ThreadLocal所在的线程
Thread t = Thread.currentThread();
// 返回当前线程持有的map
ThreadLocalMap map = getMap(t);
// 如果map不为空,则直接存储<ThreadLocal, T>键值对
if (map != null)
map.set(this, value);
else
// 否则,需要为当前线程初始化map,并存储键值对<this, firstValue>
// 1)当前线程Thread 不存在ThreadLocalMap对象
// 2)则调用createMap进行ThreadLocalMap对象的初始化
// 3)并将此实体entry作为第一个值存放至ThreadLocalMap中
createMap(t, value);
}
// 返回当前线程thread持有的map
ThreadLocalMap getMap(Thread t) {
return t.threadLocals;
}
// 为当前线程初始化map,并存储键值对<this, firstValue>
void createMap(Thread t, T firstValue) {
t.threadLocals = new ThreadLocalMap(this, firstValue);
}
// 类似HashMap。
// 进行元素存取时,要清理遇到的垃圾值,且合并原先紧密相邻的元素(除去垃圾值会造成新空槽)
static class ThreadLocalMap {
// 在map中存储键值对<key, value>
private void set(ThreadLocal<?> key, Object value) {
// We don't use a fast path as with get() because it is at
// least as common to use set() to create new entries as
// it is to replace existing ones, in which case, a fast
// path would fail more often than not.
Entry[] tab = table;
int len = tab.length;
// 当前ThreadLocal的哈希值(理想位置),需要考虑一个线程有多个ThreadLocal的情形
int index = key.threadLocalHashCode & (len-1);
// 遍历一段连续的元素,以查找匹配的ThreadLocal对象
for (Entry e = tab[index];
e != null;
e = tab[index = nextIndex(index, len)]) {
// 获取该哈希值处的ThreadLocal对象
ThreadLocal<?> k = e.get();
// 键值ThreadLocal匹配,直接更改map中的value
if (k == key) {
e.value = value;
return;
}
/*
* 如果当前位置未找到匹配的ThreadLocal,就一直遍历Entry(由于哈希值存在碰撞问题,所以可能初次计算出的哈希值没法用)
* 向后遍历的过程中,会出现以下情形:
* 1. 找到了匹配的ThreadLocal,那么执行上面的if语句,并退出
* 2. 遇到了一个垃圾值
*/
if (k == null) {
/*
* 继续从索引index开始遍历map,给ThreadLocal对象安排合适的位置
* 安排完ThreadLocal对象后,还会清理一部分垃圾
*/
replaceStaleEntry(key, value, index);
return;
}
}
// 直到遇见了空槽也没找到匹配的ThreadLocal对象,那么在此空槽处安排ThreadLocal对象和缓存的value
tab[index] = new Entry(key, value);
int sz = ++size;
// 从下标i开始向后遍历,清理一部分垃圾值,清理过后元素依然是紧凑的
boolean isRemoved = cleanSomeSlots(index, sz);
// 如果没有元素被清理,那么就要检查当前元素数量是否超过了容量阙值,以便决定是否扩容
if(!isRemoved && sz >= threshold) {
// 需要扩容,扩容的过程也是对所有的key重新哈希的过程
rehash();
}
}
/*
* 从索引staleSlot开始遍历map,给ThreadLocal对象安排合适的位置
* 安排完ThreadLocal对象后,还会清理一部分垃圾
*
* key代表待匹配的ThreadLocal对象,value就是键值对里的值
* staleSlot是遍历连续的元素去匹配ThreadLocal对象的过程中遇到的第一个垃圾值
*/
private void replaceStaleEntry(ThreadLocal<?> key, Object value,
int staleSlot) {
Entry[] tab = table;
int len = tab.length;
Entry e;
// Back up to check for prior stale entry in current run.
// We clean out whole runs at a time to avoid continual
// incremental rehashing due to garbage collector freeing
// up refs in bunches (i.e., whenever the collector runs).
// 向前扫描,查找最前的一个无效slot
int slotToExpunge = staleSlot;
// 从staleSlot开始往前遍历一段连续的元素,找出最早出现垃圾值的位置
for (int i = prevIndex(staleSlot, len);
(e = tab[i]) != null;
i = prevIndex(i, len))
// 遇到了垃圾值
if (e.get() == null)
// slotToExpunge用来记录在索引staleSlot之前的那段连续的元素中最早出现的垃圾值的下标
slotToExpunge = i;
// Find either the key or trailing null slot of run, whichever
// occurs first
/*
* 至此,i指向了一个空槽
* 如果slotToExpunge == staleSlot,说明在(i, staleSlot)这段没有垃圾值
* 如果slotToExpunge != staleSlot,说明在(i, staleSlot)这段有垃圾值,且从i开始遇到的第一个垃圾值是slotToExpunge
*
* 注:在此要想象一个循环链表,(i, staleSlot)只代表一段区域,i和staleSlot的值谁大谁小并不确定
*/
// 从staleSlot开始向后遍历一段连续的元素,找出最晚出现垃圾值的位置
for (int i = nextIndex(staleSlot, len);
(e = tab[i]) != null;
i = nextIndex(i, len)) {
ThreadLocal<?> k = e.get();
// If we find key, then we need to swap it
// with the stale entry to maintain hash table order.
// The newly stale slot, or any other stale slot
// encountered above it, can then be sent to expungeStaleEntry
// to remove or rehash all of the other entries in run.
// 找到了匹配的ThreadLocal对象
if (k == key) {
// 直接设置值
e.value = value;
/*
* 将ThreadLocal对象尽量往前挪,已知离理想位置最近且安全的“空”位置就是staleSlot
* 与此同时,垃圾值后移,稍后被清理
*/
tab[i] = tab[staleSlot];
tab[staleSlot] = e;
// Start expunge at preceding stale entry if it exists
if (slotToExpunge == staleSlot)
// 可能需要更新slotToExpunge的位置(往后设置)
slotToExpunge = i;
// 从索引slotToExpunge开始,遍历一段【连续】的元素,清理其中的垃圾值,并使各元素排序更紧凑,返回值是那个终止遍历过程的空槽下标
int stop = expungeStaleEntry(slotToExpunge);
// 从下标stop开始向后遍历,清理一部分垃圾值
cleanSomeSlots(stop, len);
return;
}
// If we didn't find stale entry on backward scan, the
// first stale entry seen while scanning for key is the
// first still present in the run.
// 发现新的垃圾值,将slotToExpunge设置到靠后一点的位置
if (k == null && slotToExpunge == staleSlot)
slotToExpunge = i;
}
/*
* 至此,j指向了一个空槽
* 如果slotToExpunge == staleSlot,说明在(staleSlot, j)这段没有垃圾值
* 如果slotToExpunge != staleSlot,有两种可能:
* 1.slotToExpunge在staleSlot之前最远的垃圾值处
* 2.slotToExpunge在staleSlot之后最近的垃圾值处
*
* 注1:这里的最远最近都是建立在连续元素的基础上讨论的,连续元素的意思是中间没有空槽(但可能有垃圾值)
*
* 注2:同上,在此也要想象一个循环链表
*/
// If key not found, put new entry in stale slot
// 如果没有找到匹配的ThreadLocal对象,就在staleSlot处创建新的节点
tab[staleSlot].value = null; // 释放值的引用
tab[staleSlot] = new Entry(key, value); // 存储键值对
// If there are any other stale entries in run, expunge them
// 清理标记处的垃圾值
if (slotToExpunge != staleSlot) {
// 从索引slotToExpunge开始,遍历一段【连续】的元素,清理其中的垃圾值,并使各元素排序更紧凑,返回值是那个终止遍历过程的空槽下标
int stop = expungeStaleEntry(slotToExpunge);
// 从下标stop开始向后遍历,捎带清理一部分垃圾值,清理过后元素依然是紧凑的
cleanSomeSlots(stop, len);
}
}
// 从下标i开始向后遍历,清理一部分垃圾值,清理过后元素依然是紧凑的
private boolean cleanSomeSlots(int i, int n) {
boolean removed = false;
ThreadLocal.ThreadLocalMap.Entry[] tab = table;
int len = tab.length;
do {
// i在任何情况下自己都不会是一个无效slot,所以从下一个开始判断
i = nextIndex(i, len);
ThreadLocal.ThreadLocalMap.Entry e = tab[i];
// 遇到了垃圾值
if (e != null && e.get() == null) {
// 扩大扫描控制因子
n = len;
removed = true;
// 从索引i开始,遍历一段【连续】的元素,清理其中的垃圾值,并使各元素排序更紧凑,返回值是那个终止遍历过程的空槽下标
i = expungeStaleEntry(i);
}
/*
* 执行log2n次循环
*
* 关于这个扫描次数控制:
* 1. 如果扫描过程中没有遇到垃圾值,那么扫描log2n个元素就结束了,不往下找了
* 2. 只要途中遇到某个垃圾值,扫描次数和范围就会扩大,其中:
* n=len扩大了扫描次数,expungeStaleEntry()方法扩大了扫描范围
*/
} while ( (n >>>= 1) != 0);
return removed;
}
// 扩容并再哈希
private void rehash() {
// 再次清理表中所有垃圾值
expungeStaleEntries();
// Use lower threshold for doubling to avoid hysteresis
/**
* threshold = 2/3 * len
* 所以threshold - threshold / 4 = 1en/2
* 这里主要是因为上面做了一次全清理所以size减小,需要进行判断。
* 判断的时候把阈值调低了。
*/
if (size >= threshold - threshold / 4)
// 迫不得已,必须扩容
resize();
}
// 扩容,扩大为原来的2倍(这样保证了长度为2的冥)
private void resize() {
Entry[] oldTab = table;
int oldLen = oldTab.length;
int newLen = oldLen * 2;
Entry[] newTab = new Entry[newLen];
int count = 0;
for (int j = 0; j < oldLen; ++j) {
Entry e = oldTab[j];
if (e != null) {
ThreadLocal<?> k = e.get();
// 仍然有垃圾值,则标记清理该元素的引用,以便GC回收
if (k == null) {
e.value = null; // Help the GC
} else {
// 计算新的“理想位置”
int h = k.threadLocalHashCode & (newLen - 1);
// 如果发生冲突,使用线性探测往后寻找合适的位置
while (newTab[h] != null)
h = nextIndex(h, newLen);
newTab[h] = e;
count++;
}
}
}
// 设置新的容量阙值
setThreshold(newLen);
size = count;
table = newTab;
}
}
3.2.8 完整源码
package java.lang;
import java.lang.ref.*;
import java.util.Objects;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.function.Supplier;
/**
* This class provides thread-local variables. These variables differ from
* their normal counterparts in that each thread that accesses one (via its
* {@code get} or {@code set} method) has its own, independently initialized
* copy of the variable. {@code ThreadLocal} instances are typically private
* static fields in classes that wish to associate state with a thread (e.g.,
* a user ID or Transaction ID).
*
* <p>For example, the class below generates unique identifiers local to each
* thread.
* A thread's id is assigned the first time it invokes {@code ThreadId.get()}
* and remains unchanged on subsequent calls.
* <pre>
* import java.util.concurrent.atomic.AtomicInteger;
*
* public class ThreadId {
* // Atomic integer containing the next thread ID to be assigned
* private static final AtomicInteger nextId = new AtomicInteger(0);
*
* // Thread local variable containing each thread's ID
* private static final ThreadLocal<Integer> threadId =
* new ThreadLocal<Integer>() {
* @Override protected Integer initialValue() {
* return nextId.getAndIncrement();
* }
* };
*
* // Returns the current thread's unique ID, assigning it if necessary
* public static int get() {
* return threadId.get();
* }
* }
* </pre>
* <p>Each thread holds an implicit reference to its copy of a thread-local
* variable as long as the thread is alive and the {@code ThreadLocal}
* instance is accessible; after a thread goes away, all of its copies of
* thread-local instances are subject to garbage collection (unless other
* references to these copies exist).
*
* @author Josh Bloch and Doug Lea
* @since 1.2
*/
/*
* 线程局部缓存:为线程缓存数据,将数据本地化(脱离共享)
*
* 原理:
* 1. 每个线程由一个ThreadLocalMap属性,本质就是一个map
* 2. map里面存储的<key, value>称为键值对,存储键值对时需要先求取哈希值
* 由于哈希值会出现冲突,所以会造成“错位”元素的出现(元素“理想位置”和实际存储位置不一样)
* “理想位置”是指该ThreadLocal对象初次计算出的哈希值
* 如果从“理想位置”到实际存储位置是连续的,这里称该序列是“紧凑”的
* 3. map里存储的key是一个弱引用,其包装了当前线程中构造的ThreadLocal对象
* 这意味着,只要ThreadLocal对象丢掉了强引用,那么在下次GC后,map中的ThreadLocal对象也会被清除
* 对于那些ThreadLocal对象为空的map元素,这里称其为【垃圾值】,稍后会被主动清理
* 4. map里存储的value就是缓存到当前线程的值,这个value没有弱引用去包装,需要专门的释放策略
* 5. 一个线程对应多个ThreadLocal,一个ThreadLocal只对应一个值
*
* 注,关于哈希值碰撞的问题:
* 如果是单线程,因为魔数HASH_INCREMENT的存在,且不断扩容,这里不容易出现碰撞
* 但如果是多线程,哈希值就很容易出现碰撞,因为属性nextHashCode是各线程共享的,会导致生成的标识出现重复
*
* ThreadLocal不能解决线程同步问题。
*
* 每个线程有一个ThreadLocalMap(作为map)。但可以有多个ThreadLocal(作为map中的key)。
*
* ThreadLocal<T> sThreadLocal = new ThreadLocal<>();
* <sThreadLocal, T>形成map的键值对,sThreadLocal作为ThreadLocalMap中的键,用它来查找匹配的值。
*/
public class ThreadLocal<T> {
/**
* ThreadLocals rely on per-thread linear-probe hash maps attached
* to each thread (Thread.threadLocals and
* inheritableThreadLocals). The ThreadLocal objects act as keys,
* searched via threadLocalHashCode. This is a custom hash code
* (useful only within ThreadLocalMaps) that eliminates collisions
* in the common case where consecutively constructed ThreadLocals
* are used by the same threads, while remaining well-behaved in
* less common cases.
*/
// 线程标识符HashCode
// 如果直接获取,那么结果无论如何都是0
// 需要调用自身类才能获取到计算后的hashcode
// 一个线程可以有多个ThreadLocal实例,各实例之内的原始种子值不相同
// 一个ThreadLocal实例也可被多个线程共享,此时多个线程内看到的原始种子值是相同的
private final int threadLocalHashCode = nextHashCode();
/**
* Creates a thread local variable.
* @see #withInitial(java.util.function.Supplier)
*/
// 构造函数
public ThreadLocal() {
}
/**
* The next hash code to be given out. Updated atomically. Starts at
* zero.
*/
// 创建一个原子数,开始数为0,由所有ThreadLocal共享,但每次构造一个ThreadLocal实例,其值都会更新
private static AtomicInteger nextHashCode =
new AtomicInteger();
/**
* The difference between successively generated hash codes - turns
* implicit sequential thread-local IDs into near-optimally spread
* multiplicative hash values for power-of-two-sized tables.
*/
// 0x61c88647为斐波那契散列乘数,哈希得到的结果会比较分散
/*
* HASH_INCREMENT是一个哈希魔数
*
* 观察如下代码:
* int s = 0;
* double n = 4;
* int Max = (int) Math.pow(2, n);
*
* for(int i=s; i<Max+s; i++){
* System.out.println(i*HASH_INCREMENT & (Max-1));
* }
* 这将 随机-均匀 产生 [0,Max-1] 这 Max 个数字。
* 而且,改变s的值,将产生不同的序列
*
* 这与伪随机数的生成原理很像
*/
private static final int HASH_INCREMENT = 0x61c88647;
/**
* Returns the next hash code.
*/
// 原子计数器自增
private static int nextHashCode() {
return nextHashCode.getAndAdd(HASH_INCREMENT);
}
/**
* Returns the current thread's "initial value" for this
* thread-local variable. This method will be invoked the first
* time a thread accesses the variable with the {@link #get}
* method, unless the thread previously invoked the {@link #set}
* method, in which case the {@code initialValue} method will not
* be invoked for the thread. Normally, this method is invoked at
* most once per thread, but it may be invoked again in case of
* subsequent invocations of {@link #remove} followed by {@link #get}.
*
* <p>This implementation simply returns {@code null}; if the
* programmer desires thread-local variables to have an initial
* value other than {@code null}, {@code ThreadLocal} must be
* subclassed, and this method overridden. Typically, an
* anonymous inner class will be used.
*
* @return the initial value for this thread-local
*/
// 初始化设值的方法,可以被子类覆盖
protected T initialValue() {
return null;
}
/**
* Creates a thread local variable. The initial value of the variable is
* determined by invoking the {@code get} method on the {@code Supplier}.
*
* @param <S> the type of the thread local's value
* @param supplier the supplier to be used to determine the initial value
* @return a new thread local variable
* @throws NullPointerException if the specified supplier is null
* @since 1.8
*/
// 返回一个扩展的ThreadLocal,其关联的初值由supplier给出
public static <S> ThreadLocal<S> withInitial(Supplier<? extends S> supplier) {
return new SuppliedThreadLocal<>(supplier);
}
/**
* Returns the value in the current thread's copy of this
* thread-local variable. If the variable has no value for the
* current thread, it is first initialized to the value returned
* by an invocation of the {@link #initialValue} method.
*
* @return the current thread's value of this thread-local
*/
// 返回当前ThreadLocal对象关联的值
public T get() {
// 返回当前ThreadLocal所在的线程
Thread t = Thread.currentThread();
// 返回当前线程t持有的map
ThreadLocalMap map = getMap(t);
// 如果map不为null,返回其键值对中保存的calue
if (map != null) {
ThreadLocalMap.Entry e = map.getEntry(this);
if (e != null) {
@SuppressWarnings("unchecked")
T result = (T)e.value;
return result;
}
}
// 如果map为空,或者map不空,但是还没有存储当前的ThreadLocalMap对象,则执行以下逻辑
/*
* 初始化map,并存储键值对<key, value>,最后返回value
* 其中,key是当前的ThreadLocal对象,value是为当前的ThreadLocal对象关联的初值
*/
return setInitialValue();
}
/**
* Variant of set() to establish initialValue. Used instead
* of set() in case user has overridden the set() method.
*
* @return the initial value
*/
// 初始化map,并存储键值对<key, value>,最后返回value
// 其中,key是当前的ThreadLocal对象,value是为当前的ThreadLocal对象关联的初值
private T setInitialValue() {
// 获取为ThreadLocal对象设置关联的初值
T value = initialValue();
Thread t = Thread.currentThread();
// 返回当前线程t持有的map
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
// 为当前线程初始化map,并存储键值对<t, value>
createMap(t, value);
// 如果是TerminatingThreadLocal的ThreadLocal,需要将其注册到TerminatingThreadLocal的静态容器中以便后续处理
// if(this instanceof TerminatingThreadLocal) {
// TerminatingThreadLocal.register((TerminatingThreadLocal<?>) this);
// }
return value;
}
/**
* Sets the current thread's copy of this thread-local variable
* to the specified value. Most subclasses will have no need to
* override this method, relying solely on the {@link #initialValue}
* method to set the values of thread-locals.
*
* @param value the value to be stored in the current thread's copy of
* this thread-local.
*/
// 为当前ThreadLocal对象关联value值
public void set(T value) {
// 返回当前ThreadLocal所在的线程
Thread t = Thread.currentThread();
// 返回当前线程持有的map
ThreadLocalMap map = getMap(t);
// 如果map不为空,则直接存储<ThreadLocal, T>键值对
if (map != null)
map.set(this, value);
else
// 否则,需要为当前线程初始化map,并存储键值对<this, firstValue>
// 1)当前线程Thread 不存在ThreadLocalMap对象
// 2)则调用createMap进行ThreadLocalMap对象的初始化
// 3)并将此实体entry作为第一个值存放至ThreadLocalMap中
createMap(t, value);
}
/**
* Removes the current thread's value for this thread-local
* variable. If this thread-local variable is subsequently
* {@linkplain #get read} by the current thread, its value will be
* reinitialized by invoking its {@link #initialValue} method,
* unless its value is {@linkplain #set set} by the current thread
* in the interim. This may result in multiple invocations of the
* {@code initialValue} method in the current thread.
*
* @since 1.5
*/
// 清理当前ThreadLocal对象关联的键值对,可以看成是set的逆操作
public void remove() {
ThreadLocalMap m = getMap(Thread.currentThread());
if (m != null)
// 从map中清理当前ThreadLocal对象关联的键值对
m.remove(this);
}
/**
* Get the map associated with a ThreadLocal. Overridden in
* InheritableThreadLocal.
*
* @param t the current thread
* @return the map
*/
// 返回当前线程thread持有的map
ThreadLocalMap getMap(Thread t) {
return t.threadLocals;
}
/**
* Create the map associated with a ThreadLocal. Overridden in
* InheritableThreadLocal.
*
* @param t the current thread
* @param firstValue value for the initial entry of the map
*/
// 为当前线程初始化map,并存储键值对<this, firstValue>
void createMap(Thread t, T firstValue) {
t.threadLocals = new ThreadLocalMap(this, firstValue);
}
/**
* Factory method to create map of inherited thread locals.
* Designed to be called only from Thread constructor.
*
* @param parentMap the map associated with parent thread
* @return a map containing the parent's inheritable bindings
*/
// 构造一个新的map,其包含给定的parentMap中当前所有可继承ThreadLocals,且允许修改parentMap中的值
// 该方法在Thread调用
static ThreadLocalMap createInheritedMap(ThreadLocalMap parentMap) {
return new ThreadLocalMap(parentMap);
}
/**
* Method childValue is visibly defined in subclass
* InheritableThreadLocal, but is internally defined here for the
* sake of providing createInheritedMap factory method without
* needing to subclass the map class in InheritableThreadLocal.
* This technique is preferable to the alternative of embedding
* instanceof tests in methods.
*/
// 获取parentValue,有时会对其进行加工,主要用于测试,参见子类InheritableThreadLocal等。
T childValue(T parentValue) {
throw new UnsupportedOperationException();
}
/**
* Returns {@code true} if there is a value in the current thread's copy of this thread-local variable, even if that values is {@code null}.
*
* @return {@code true} if current thread has associated value in this thread-local variable; {@code false} if not
*/
// 返回true意味着当前ThreadLocal对象没有变成垃圾值
boolean isPresent() {
Thread t = Thread.currentThread();
// 返回当前线程t持有的map
ThreadLocalMap map = getMap(t);
return map != null && map.getEntry(this) != null;
}
/**
* An extension of ThreadLocal that obtains its initial value from
* the specified {@code Supplier}.
*/
// ThreadLocal的一个扩展。其ThreadLocal关联的初值由字段supplier给出
static final class SuppliedThreadLocal<T> extends ThreadLocal<T> {
private final Supplier<? extends T> supplier;
SuppliedThreadLocal(Supplier<? extends T> supplier) {
this.supplier = Objects.requireNonNull(supplier);
}
@Override
protected T initialValue() {
return supplier.get();
}
}
/**
* ThreadLocalMap is a customized hash map suitable only for
* maintaining thread local values. No operations are exported
* outside of the ThreadLocal class. The class is package private to
* allow declaration of fields in class Thread. To help deal with
* very large and long-lived usages, the hash table entries use
* WeakReferences for keys. However, since reference queues are not
* used, stale entries are guaranteed to be removed only when
* the table starts running out of space.
*/
// 类似HashMap。
// 进行元素存取时,要清理遇到的垃圾值,且合并原先紧密相邻的元素(除去垃圾值会造成新空槽)
static class ThreadLocalMap {
/**
* The entries in this hash map extend WeakReference, using
* its main ref field as the key (which is always a
* ThreadLocal object). Note that null keys (i.e. entry.get()
* == null) mean that the key is no longer referenced, so the
* entry can be expunged from table. Such entries are referred to
* as "stale entries" in the code that follows.
*/
// 键值对实体的存储结构
// 如果key为null,(entry.get() == null)表示key不再被引用,表示ThreadLocal对象被回收
// 因此这时候entry也可以从table从清除。
static class Entry extends WeakReference<ThreadLocal<?>> {
/** The value associated with this ThreadLocal. */
// 当前线程关联的value,这个value并没有用弱引用追踪
Object value;
/*
* 构造键值对
* k作key,v作value
* 作为key的ThreadLocal会被包装为一个弱引用
*/
Entry(ThreadLocal<?> k, Object v) {
super(k);
value = v;
}
}
/**
* The initial capacity -- MUST be a power of two.
*/
// Map初始容量,必须为2的冪
private static final int INITIAL_CAPACITY = 16;
/**
* The table, resized as necessary.
* table.length MUST always be a power of two.
*/
// 存储Map中的键值对实体
// 数组长度必须是2的冥
private Entry[] table;
/**
* The number of entries in the table.
*/
// Map元素数量,可以用于判断table当前使用量是否超过负因子
private int size = 0;
/**
* The next size value at which to resize.
*/
private int threshold; // 扩容阙值,默认为0
/**
* Set the resize threshold to maintain at worst a 2/3 load factor.
*/
// 定义为长度的2/3
private void setThreshold(int len) {
threshold = len * 2 / 3;
}
/**
* Increment i modulo len.
*/
// 哈希值发生冲突时,计算下一个哈希值。此处使用线性探测寻址,只是简单地将索引增一。
private static int nextIndex(int i, int len) {
// 如果索引增一后越界,则返回到下标0的地方,循环进行
return ((i + 1 < len) ? i + 1 : 0);
}
/**
* Decrement i modulo len.
*/
// 线性探测,但是逆方向进行,即向前遍历
private static int prevIndex(int i, int len) {
return ((i - 1 >= 0) ? i - 1 : len - 1);
}
/**
* Construct a new map initially containing (firstKey, firstValue).
* ThreadLocalMaps are constructed lazily, so we only create
* one when we have at least one entry to put in it.
*/
// 初始化map,并存储键值对<firstKey, firstValue>
ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
// 初始化table
table = new Entry[INITIAL_CAPACITY];
// 计算索引
int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
// 设置值
table[i] = new Entry(firstKey, firstValue);
size = 1;
// 设置阈值
setThreshold(INITIAL_CAPACITY);
}
/**
* Construct a new map including all Inheritable ThreadLocals
* from given parent map. Called only by createInheritedMap.
*
* @param parentMap the map associated with parent thread.
*/
// 构造一个新的map,其包含给定的parentMap中当前所有可继承ThreadLocals,且允许修改parentMap中的值。仅由createInheritedMap调用
private ThreadLocalMap(ThreadLocalMap parentMap) {
// 获取父线程的所有Entry
Entry[] parentTable = parentMap.table;
// 获取父线程的Entry数量
int len = parentTable.length;
setThreshold(len);
// ThreadLocalMap使用Entry[] table存储ThreadLocal
table = new Entry[len];
// 挨个复制父线程中map的Entry
for (int j = 0; j < len; j++) {
Entry e = parentTable[j];
if (e != null) {
@SuppressWarnings("unchecked")
ThreadLocal<Object> key = (ThreadLocal<Object>) e.get();
if (key != null) {
// 为什么这里不是直接赋值而是使用childValue方法?
// 因为childValue内部是直接将e.value返回的,
// 这样实现的目的可能是为了保证代码最大程度上的拓展性
// 因为可以重写childValue()覆盖
Object value = key.childValue(e.value);
Entry c = new Entry(key, value);
int h = key.threadLocalHashCode & (len - 1);
while (table[h] != null)
h = nextIndex(h, len);
table[h] = c;
size++;
}
}
}
}
/**
* Get the entry associated with key. This method
* itself handles only the fast path: a direct hit of existing
* key. It otherwise relays to getEntryAfterMiss. This is
* designed to maximize performance for direct hits, in part
* by making this method readily inlinable.
*
* @param key the thread local object
* @return the entry associated with key, or null if no such
*/
// 返回key关联的键值对实体
private Entry getEntry(ThreadLocal<?> key) {
int i = key.threadLocalHashCode & (table.length - 1);
Entry e = table[i];
if (e != null && e.get() == key)
return e;
else
// 从i开始向后遍历找到键值对实体
return getEntryAfterMiss(key, i, e);
}
/**
* Version of getEntry method for use when key is not found in
* its direct hash slot.
*
* @param key the thread local object
* @param i the table index for key's hash code
* @param e the entry at table[i]
* @return the entry associated with key, or null if no such
*/
// 从i开始向后遍历找到键值对实体
private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) {
Entry[] tab = table;
int len = tab.length;
while (e != null) {
ThreadLocal<?> k = e.get();
if (k == key)
return e;
// 遇到了垃圾值
if (k == null)
// 从索引i开始,遍历一段【连续】的元素,清理其中的垃圾值,并使各元素排序更紧凑
expungeStaleEntry(i);
else
i = nextIndex(i, len);
e = tab[i];
}
return null;
}
/**
* Set the value associated with key.
*
* @param key the thread local object
* @param value the value to be set
*/
// 在map中存储键值对<key, value>
private void set(ThreadLocal<?> key, Object value) {
// We don't use a fast path as with get() because it is at
// least as common to use set() to create new entries as
// it is to replace existing ones, in which case, a fast
// path would fail more often than not.
Entry[] tab = table;
int len = tab.length;
// 当前ThreadLocal的哈希值(理想位置),需要考虑一个线程有多个ThreadLocal的情形
int index = key.threadLocalHashCode & (len-1);
// 遍历一段连续的元素,以查找匹配的ThreadLocal对象
for (Entry e = tab[index];
e != null;
e = tab[index = nextIndex(index, len)]) {
// 获取该哈希值处的ThreadLocal对象
ThreadLocal<?> k = e.get();
// 键值ThreadLocal匹配,直接更改map中的value
if (k == key) {
e.value = value;
return;
}
/*
* 如果当前位置未找到匹配的ThreadLocal,就一直遍历Entry(由于哈希值存在碰撞问题,所以可能初次计算出的哈希值没法用)
* 向后遍历的过程中,会出现以下情形:
* 1. 找到了匹配的ThreadLocal,那么执行上面的if语句,并退出
* 2. 遇到了一个垃圾值
*/
if (k == null) {
/*
* 继续从索引index开始遍历map,给ThreadLocal对象安排合适的位置
* 安排完ThreadLocal对象后,还会清理一部分垃圾
*/
replaceStaleEntry(key, value, index);
return;
}
}
// 直到遇见了空槽也没找到匹配的ThreadLocal对象,那么在此空槽处安排ThreadLocal对象和缓存的value
tab[index] = new Entry(key, value);
int sz = ++size;
// 从下标i开始向后遍历,清理一部分垃圾值,清理过后元素依然是紧凑的
boolean isRemoved = cleanSomeSlots(index, sz);
// 如果没有元素被清理,那么就要检查当前元素数量是否超过了容量阙值,以便决定是否扩容
if(!isRemoved && sz >= threshold) {
// 需要扩容,扩容的过程也是对所有的key重新哈希的过程
rehash();
}
}
/**
* Remove the entry for key.
*/
// 从map中清理key关联的键值对
private void remove(ThreadLocal<?> key) {
Entry[] tab = table;
int len = tab.length;
int i = key.threadLocalHashCode & (len-1);
for (Entry e = tab[i];
e != null;
e = tab[i = nextIndex(i, len)]) {
if (e.get() == key) {
e.clear();
// 从索引i开始,遍历一段【连续】的元素,清理其中的垃圾值,并使各元素排序更紧凑
expungeStaleEntry(i);
return;
}
}
}
/**
* Replace a stale entry encountered during a set operation
* with an entry for the specified key. The value passed in
* the value parameter is stored in the entry, whether or not
* an entry already exists for the specified key.
*
* As a side effect, this method expunges all stale entries in the
* "run" containing the stale entry. (A run is a sequence of entries
* between two null slots.)
*
* @param key the key
* @param value the value to be associated with key
* @param staleSlot index of the first stale entry encountered while
* searching for key.
*/
/*
* 从索引staleSlot开始遍历map,给ThreadLocal对象安排合适的位置
* 安排完ThreadLocal对象后,还会清理一部分垃圾
*
* key代表待匹配的ThreadLocal对象,value就是键值对里的值
* staleSlot是遍历连续的元素去匹配ThreadLocal对象的过程中遇到的第一个垃圾值
*/
private void replaceStaleEntry(ThreadLocal<?> key, Object value,
int staleSlot) {
Entry[] tab = table;
int len = tab.length;
Entry e;
// Back up to check for prior stale entry in current run.
// We clean out whole runs at a time to avoid continual
// incremental rehashing due to garbage collector freeing
// up refs in bunches (i.e., whenever the collector runs).
int slotToExpunge = staleSlot;
// 从staleSlot开始往前遍历一段连续的元素,找出最早出现垃圾值的位置
for (int i = prevIndex(staleSlot, len);
(e = tab[i]) != null;
i = prevIndex(i, len))
// 遇到了垃圾值
if (e.get() == null)
// slotToExpunge用来记录在索引staleSlot之前的那段连续的元素中最早出现的垃圾值的下标
slotToExpunge = i;
// Find either the key or trailing null slot of run, whichever
// occurs first
/*
* 至此,i指向了一个空槽
* 如果slotToExpunge == staleSlot,说明在(i, staleSlot)这段没有垃圾值
* 如果slotToExpunge != staleSlot,说明在(i, staleSlot)这段有垃圾值,且从i开始遇到的第一个垃圾值是slotToExpunge
*
* 注:在此要想象一个循环链表,(i, staleSlot)只代表一段区域,i和staleSlot的值谁大谁小并不确定
*/
// 从staleSlot开始向后遍历一段连续的元素,找出最晚出现垃圾值的位置
for (int i = nextIndex(staleSlot, len);
(e = tab[i]) != null;
i = nextIndex(i, len)) {
ThreadLocal<?> k = e.get();
// If we find key, then we need to swap it
// with the stale entry to maintain hash table order.
// The newly stale slot, or any other stale slot
// encountered above it, can then be sent to expungeStaleEntry
// to remove or rehash all of the other entries in run.
// 找到了匹配的ThreadLocal对象
if (k == key) {
// 直接设置值
e.value = value;
/*
* 将ThreadLocal对象尽量往前挪,已知离理想位置最近且安全的“空”位置就是staleSlot
* 与此同时,垃圾值后移,稍后被清理
*/
tab[i] = tab[staleSlot];
tab[staleSlot] = e;
// Start expunge at preceding stale entry if it exists
if (slotToExpunge == staleSlot)
// 可能需要更新slotToExpunge的位置(往后设置)
slotToExpunge = i;
// 从索引slotToExpunge开始,遍历一段【连续】的元素,清理其中的垃圾值,并使各元素排序更紧凑,返回值是那个终止遍历过程的空槽下标
int stop = expungeStaleEntry(slotToExpunge);
// 从下标stop开始向后遍历,清理一部分垃圾值
cleanSomeSlots(stop, len);
return;
}
// If we didn't find stale entry on backward scan, the
// first stale entry seen while scanning for key is the
// first still present in the run.
// 发现新的垃圾值,将slotToExpunge设置到靠后一点的位置
if (k == null && slotToExpunge == staleSlot)
slotToExpunge = i;
}
/*
* 至此,j指向了一个空槽
* 如果slotToExpunge == staleSlot,说明在(staleSlot, j)这段没有垃圾值
* 如果slotToExpunge != staleSlot,有两种可能:
* 1.slotToExpunge在staleSlot之前最远的垃圾值处
* 2.slotToExpunge在staleSlot之后最近的垃圾值处
*
* 注1:这里的最远最近都是建立在连续元素的基础上讨论的,连续元素的意思是中间没有空槽(但可能有垃圾值)
*
* 注2:同上,在此也要想象一个循环链表
*/
// If key not found, put new entry in stale slot
// 如果没有找到匹配的ThreadLocal对象,就在staleSlot处创建新的节点
tab[staleSlot].value = null; // 释放值的引用
tab[staleSlot] = new Entry(key, value); // 存储键值对
// If there are any other stale entries in run, expunge them
// 清理标记处的垃圾值
if (slotToExpunge != staleSlot) {
// 从索引slotToExpunge开始,遍历一段【连续】的元素,清理其中的垃圾值,并使各元素排序更紧凑,返回值是那个终止遍历过程的空槽下标
int stop = expungeStaleEntry(slotToExpunge);
// 从下标stop开始向后遍历,捎带清理一部分垃圾值,清理过后元素依然是紧凑的
cleanSomeSlots(stop, len);
}
}
/**
* Expunge a stale entry by rehashing any possibly colliding entries
* lying between staleSlot and the next null slot. This also expunges
* any other stale entries encountered before the trailing null. See
* Knuth, Section 6.4
*
* @param staleSlot index of slot known to have null key
* @return the index of the next null slot after staleSlot
* (all between staleSlot and this slot will have been checked
* for expunging).
*/
/*
* 从索引staleSlot开始,遍历一段【连续】的元素,清理其中的垃圾值,并使各元素排序更紧凑
* 返回值是那个终止遍历过程的空槽下标
*
* 执行过程:
* 1. 清理staleSlot中的垃圾值
* 2. 遍历staleSlot后面的元素,直到遇见Entry数组中的空槽(即tab[i]==null)才停止。遍历过程中:
* 2.1 清理遇到的垃圾值
* 2.2 遇到“错位”的元素,将其向前放置在离“理想位置”最近的地方
* 换句话说,经过2.2的操作后,从“理想位置”出发查找某个元素,只要该元素是存在的,
* 那么在找到它的过程中,路过的Entry元素是连成一片的。
* 理解这一点很重要,这是理解set方法的基础之一。
*/
private int expungeStaleEntry(int staleSlot) {
Entry[] tab = table;
int len = tab.length;
// expunge entry at staleSlot
// 索引staleSlot处本身标识的就是一个垃圾值,所以需要首先清理掉
tab[staleSlot].value = null;
tab[staleSlot] = null;
// size减1,置空后table的被使用量减1
size--;
// Rehash until we encounter null
Entry e;
int i;
// 继续往后遍历连续的Entry数组,直到遇见一个空槽后停止遍历
for (i = nextIndex(staleSlot, len);
(e = tab[i]) != null;
i = nextIndex(i, len)) {
ThreadLocal<?> k = e.get();
// 如果当前Entry已经不包含ThreadLocal,说明这是个垃圾值,需要清理
if (k == null) {
e.value = null;
tab[i] = null;
size--;
} else {
// 该ThreadLocal对象的“理想位置”
int h = k.threadLocalHashCode & (len - 1);
// 遇到“错位”的元素
if (h != i) {
// 将当前位置置空
tab[i] = null;
// Unlike Knuth 6.4 Algorithm R, we must scan until
// null because multiple entries could have been stale.
// 将其向前放置在离“理想位置”最近的地方
while (tab[h] != null)
h = nextIndex(h, len);
// 将该ThreadLocal对象放进去
tab[h] = e;
/* 这一堆操作目的是让元素存储下标更接近其计算出的哈希值 */
}
}
}
return i;
}
/**
* Heuristically scan some cells looking for stale entries.
* This is invoked when either a new element is added, or
* another stale one has been expunged. It performs a
* logarithmic number of scans, as a balance between no
* scanning (fast but retains garbage) and a number of scans
* proportional to number of elements, that would find all
* garbage but would cause some insertions to take O(n) time.
*
* @param i a position known NOT to hold a stale entry. The
* scan starts at the element after i.
*
* @param n scan control: {@code log2(n)} cells are scanned,
* unless a stale entry is found, in which case
* {@code log2(table.length)-1} additional cells are scanned.
* When called from insertions, this parameter is the number
* of elements, but when from replaceStaleEntry, it is the
* table length. (Note: all this could be changed to be either
* more or less aggressive by weighting n instead of just
* using straight log n. But this version is simple, fast, and
* seems to work well.)
*
* @return true if any stale entries have been removed.
*/
// 从下标i开始向后遍历,清理一部分垃圾值,清理过后元素依然是紧凑的
private boolean cleanSomeSlots(int i, int n) {
boolean removed = false;
ThreadLocal.ThreadLocalMap.Entry[] tab = table;
int len = tab.length;
do {
i = nextIndex(i, len);
ThreadLocal.ThreadLocalMap.Entry e = tab[i];
// 遇到了垃圾值
if (e != null && e.get() == null) {
n = len;
removed = true;
// 从索引i开始,遍历一段【连续】的元素,清理其中的垃圾值,并使各元素排序更紧凑,返回值是那个终止遍历过程的空槽下标
i = expungeStaleEntry(i);
}
/*
* 执行log2n次循环
*
* 关于这个扫描次数控制:
* 1. 如果扫描过程中没有遇到垃圾值,那么扫描log2n个元素就结束了,不往下找了
* 2. 只要途中遇到某个垃圾值,扫描次数和范围就会扩大,其中:
* n=len扩大了扫描次数,expungeStaleEntry()方法扩大了扫描范围
*/
} while ( (n >>>= 1) != 0);
return removed;
}
/**
* Re-pack and/or re-size the table. First scan the entire
* table removing stale entries. If this doesn't sufficiently
* shrink the size of the table, double the table size.
*/
// 扩容并再哈希
private void rehash() {
// 再次清理表中所有垃圾值
expungeStaleEntries();
// Use lower threshold for doubling to avoid hysteresis
/**
* threshold = 2/3 * len
* 所以threshold - threshold / 4 = 1en/2
* 这里主要是因为上面做了一次全清理所以size减小,需要进行判断。
* 判断的时候把阈值调低了。
*/
if (size >= threshold - threshold / 4)
// 迫不得已,必须扩容
resize();
}
/**
* Double the capacity of the table.
*/
// 扩容,扩大为原来的2倍(这样保证了长度为2的冥)
private void resize() {
Entry[] oldTab = table;
int oldLen = oldTab.length;
int newLen = oldLen * 2;
Entry[] newTab = new Entry[newLen];
int count = 0;
for (int j = 0; j < oldLen; ++j) {
Entry e = oldTab[j];
if (e != null) {
ThreadLocal<?> k = e.get();
// 仍然有垃圾值,则标记清理该元素的引用,以便GC回收
if (k == null) {
e.value = null; // Help the GC
} else {
// 计算新的“理想位置”
int h = k.threadLocalHashCode & (newLen - 1);
// 如果发生冲突,使用线性探测往后寻找合适的位置
while (newTab[h] != null)
h = nextIndex(h, newLen);
newTab[h] = e;
count++;
}
}
}
// 设置新的容量阙值
setThreshold(newLen);
size = count;
table = newTab;
}
/**
* Expunge all stale entries in the table.
*/
// 清理表中所有垃圾值
private void expungeStaleEntries() {
Entry[] tab = table;
int len = tab.length;
for (int j = 0; j < len; j++) {
Entry e = tab[j];
// 遇到了垃圾值
if (e != null && e.get() == null)
// 从索引j开始,遍历一段【连续】的元素,清理其中的垃圾值,并使各元素排序更紧凑
expungeStaleEntry(j);
}
}
}
}