矩阵的建立
- 直接输入矩阵

>> A = [1,2,3;4,5,6;7,8,9]A =1 2 34 5 67 8 9
利用已有矩阵建立
>> A = [1,2,3;4,5,6;7,8,9];>> B = [-1,-2,-3;-4,-5,-6;-7,-8,-9];>> C = [A,B;B,A]C =1 2 3 -1 -2 -34 5 6 -4 -5 -67 8 9 -7 -8 -9-1 -2 -3 1 2 3-4 -5 -6 4 5 6-7 -8 -9 7 8 9
可以用实部矩阵和虚部矩阵构成复数矩阵
>> B = [1,2,3;4,5,6];>> C = [6,7,8;9,10,11];>> A = B + i*CA =1.0000 + 6.0000i 2.0000 + 7.0000i 3.0000 + 8.0000i4.0000 + 9.0000i 5.0000 +10.0000i 6.0000 +11.0000i
冒号表达式

等价于 linspace 函数
- 结构矩阵

>> a(1).x1 = 10;>> a(1).x2 = 'liu';>> a(1).x3 = [11,21;34,78];>> a(2).x1=12;>> a(2).x2='wang';>> a(3).x3=[34,191;27,578];
- 单元矩阵

>> b = {10, 'liu', [11,21;34,78]; 12,'wang',[34,191;27,578]}b =2×3 cell 数组{[10]} {'liu' } {2×2 double}{[12]} {'wang'} {2×2 double}
矩阵操作
矩阵元素的引用方式
通过下标
- MATLAB中下标从1开始
>> A(3,2) = 200

>> A = [1,2,3;4,5,6];>> A(4,5) = 10A =1 2 3 0 04 5 6 0 00 0 0 0 00 0 0 0 10
- MATLAB中下标从1开始
通过序号来引用

>> A = [1,2,3;4,5,6]A =1 2 34 5 6>> A(3)ans =2

>> A = [1:3;4:6]A =1 2 34 5 6>> D = sub2ind(size(A), [1,2;2,2], [1,1;3,2])D =1 26 4

>> [I,J] = ind2sub([3,3], [1,3,5])I =1 3 2J =1 1 2
使用冒号表达式获得子矩阵

>> A = [1,2,3,4,5;6,7,8,9,10;11,12,13,14,15]A =1 2 3 4 56 7 8 9 1011 12 13 14 15>> A(1:2,:)ans =1 2 3 4 56 7 8 9 10>> A(2:3,1:2:5)ans =6 8 1011 13 15
利用空元素删除矩阵的元素

>> A = [1,2,3,0,0;7,0,9,2,6;1,4,-1,1,8]A =1 2 3 0 07 0 9 2 61 4 -1 1 8>> A(:,[2,4]) = []A =1 3 07 9 61 -1 8
该表矩阵的形状

>> x = [23,45,65,34,65,34,33,11,51,23];>> y = reshape(x, 2, 5)y =23 65 65 33 5145 34 34 11 23
A(:) 将矩阵A的每一列元素堆叠起来,成为一个列向量
- 等价于
reshape(A,x,1)>> A = [22, 32, 11; 55, 22, 44]A =22 32 1155 22 44>> B = A(:)B =225532221144
