对角阵

- 提取矩阵的对角线元素

- 构造对角阵

先建立矩阵A,然后将A的第一行矩阵乘以1,第二行乘以2,…,第五行乘以5

>> A = [7,0,1,0,5; 3,5,7,4,1; 4,0,3,0,2; 1,1,9,2,3; 1,8,5,2,9]A =7 0 1 0 53 5 7 4 14 0 3 0 21 1 9 2 31 8 5 2 9>> D = diag(1:5);>> D * Aans =7 0 1 0 56 10 14 8 212 0 9 0 64 4 36 8 125 40 25 10 45

>> D = diag(1:5);>> D * Aans =7 0 3 0 253 10 21 16 54 0 9 0 101 2 27 8 151 16 15 8 45
对角阵
- 上三角阵

>> triu(ones(4), -1)ans =1 1 1 11 1 1 10 1 1 10 0 1 1
- 下三角阵
矩阵的转置

>> A = [1,3; 3+4i, 1-2i]A =1 + 0i 3 + 0i3 + 4i 1 - 2i>> A.'ans =1 + 0i 3 + 4i3 + 0i 1 - 2i>> A'ans =1 + 0i 3 - 4i3 + 0i 1 + 2i
矩阵的旋转

>> A = [1,3,2; -3,2,1; 4,1,2]A =1 3 2-3 2 14 1 2>> rot90(A)ans =2 1 23 2 11 -3 4>> rot90(A, 2)ans =2 1 41 2 -32 3 1
矩阵的翻转

验证魔方阵的主对角线、副对角线元素之和相等
>> A = magic(5);>> D1 = diag(A);>> sum(D1)ans =65>> B = flipud(A);>> D2 = diag(B);>> sum(D2)ans =65
矩阵的求逆


>> A = [1,2,3; 1,4,9; 1,8,27]A =1 2 31 4 91 8 27>> b = [5;-2;6]b =5-26>> x = inv(A) * bx =23-29/211/3>> x = A\bx =23-29/211/3
