特征值和特征向量的命令
>> A = [1,1,0;1,0,5;1,10,2]
A =
1 1 0
1 0 5
1 10 2
>> [X,D] = eig(A)
X =
0.0722 0.9751 0.0886
0.5234 -0.0750 -0.6356
0.8490 -0.2089 0.7669
D =
8.2493 0 0
0 0.9231 0
0 0 -6.1723
验证特征向量和特征值的定义
>> A * X(:, 1)
ans =
0.5956
4.3174
7.0040
>> D(1) * X(:,1)
ans =
0.5956
4.3174
7.0040
【例题】
>>R = [-1,2,0;2,-4,1;1,1,-6]
R =
-1 2 0
2 -4 1
1 1 -6
>> S = [1,2;2,3]
S =
1 2
2 3
>> A = [R, zeros(3,2); zeros(2,3), S];
>> [X1,D1] = eig(R)
X1 =
0.8553 0.4517 0.1899
0.4703 -0.8395 -0.5111
0.2173 -0.3021 0.8383
D1 =
0.0996 0 0
0 -4.7165 0
0 0 -6.3832
>> [X2,D2] = eig(S);
>> [X3,D3] = eig(A);
>> X2
X2 =
-0.8507 0.5257
0.5257 0.8507
>> D2
D2 =
-0.2361 0
0 4.2361
>> X3
X3 =
0.8553 0.4517 0.1899 0 0
0.4703 -0.8395 -0.5111 0 0
0.2173 -0.3021 0.8383 0 0
0 0 0 -0.8507 -0.5257
0 0 0 0.5257 -0.8507
>> D3
D3 =
0.0996 0 0 0 0
0 -4.7165 0 0 0
0 0 -6.3832 0 0
0 0 0 -0.2361 0
0 0 0 0 4.2361
特征值的几何意义
【例题2】
>> x = [0,0.5,0.5,3,5.5,5.5,6,6,3,0;0,0,6,0,6,0,0,8,1,8];
>> A = [1,0.5;0,1]
>> y = A*x;
>> subplot(2, 2, 1);
>> fill(x(1,:), x(2:), 'r');
>> fill(x(1,:), x(2,:), 'r');
>> subplot(2, 2, 2);
>> fill(y(1,:), y(2,:), 'r');
所以斜体字体可以由普通的字体通过线性变换生成,这样可以减少存储空间