方阵的行列式

>> format rat>> A = [1,3,2; -3,2,1; 4,1,2]A =1 3 2-3 2 14 1 2>> det(inv(A))ans =1/11>> 1 / det(A)ans =1/11
矩阵的秩

求3~20阶魔方阵的秩
>> for n = 3:20r(n) = rank(magic(n));end>> bar(r)
矩阵的迹
向量和矩阵的范数
- 向量的三种常用范数


- 矩阵的范数


>> x = [2 0 1; -1 1 0; -3 3 0]x =2 0 1-1 1 0-3 3 0>> n = norm(x)n =4.7234>> n = norm(x, 1)n =6
矩阵的条件数


求2~10阶希尔伯特矩阵的条件数
>> for n = 2:10c(n) = cond(hilb(n));end>> format long>> c'ans =1.0e+13 *00.0000000000019280.0000000000524060.0000000015513740.0000000476607250.0000014951058640.0000475367356910.0015257575566630.0493153404551011.602502816811318

