该项目的evaluate文件夹下的一个脚本eval_metric.py定义了关于测试过程中的评价函数。这个脚本主要涉及两个类:MApMetric和VOC07MApMetric,后者是继承前者并重写了一些方法得到的,因此MApMetric类是核心。这两者都是用来计算object detection算法中的MAp(Mean avearage precision)。
import mxnet as mximport numpy as npimport osimport matplotlibmatplotlib.use('Agg')import matplotlib.pyplot as pltclass MApMetric(mx.metric.EvalMetric):"""Calculate mean AP for object detection taskParameters:---------ovp_thresh : floatoverlap threshold for TPuse_difficult : booleanuse difficult ground-truths if applicable, otherwise just ignoreclass_names : list of stroptional, if provided, will print out AP for each classpred_idx : intprediction index in network output listroc_output_pathoptional, if provided, will save a ROC graph for each classtensorboard_pathoptional, if provided, will save a ROC graph to tensorboard"""# __init__中还是执行常规的重置操作:reset()和一些赋值操作。def __init__(self, ovp_thresh=0.5, use_difficult=False, class_names=None,pred_idx=0, roc_output_path=None, tensorboard_path=None):super(MApMetric, self).__init__('mAP')if class_names is None:self.num = Noneelse:assert isinstance(class_names, (list, tuple))for name in class_names:assert isinstance(name, str), "must provide names as str"num = len(class_names)self.name = class_names + ['mAP']self.num = num + 1self.reset()self.ovp_thresh = ovp_threshself.use_difficult = use_difficultself.class_names = class_namesself.pred_idx = int(pred_idx)self.roc_output_path = roc_output_pathself.tensorboard_path = tensorboard_pathdef save_roc_graph(self, recall=None, prec=None, classkey=1, path=None, ap=None):if not os.path.exists(path):os.mkdir(path)plot_path = os.path.join(path, 'roc_'+self.class_names[classkey])if os.path.exists(plot_path):os.remove(plot_path)fig = plt.figure()plt.title(self.class_names[classkey])plt.plot(recall, prec, 'b', label='AP = %0.2f' % ap)plt.legend(loc='lower right')plt.xlim([0, 1])plt.ylim([0, 1])plt.ylabel('Precision')plt.xlabel('Recall')plt.savefig(plot_path)plt.close(fig)def reset(self):"""Clear the internal statistics to initial state."""if getattr(self, 'num', None) is None:self.num_inst = 0self.sum_metric = 0.0else:self.num_inst = [0] * self.numself.sum_metric = [0.0] * self.numself.records = dict()self.counts = dict()# 当代码要读取MAp值时就会调用get方法,在get方法中通过调用_update方法计算self.records变量得到MAp值。# 因为self.sum_metric和self.num_inst在这里是list,所以通过循环读取的方式最后返回tuple。def get(self):"""Get the current evaluation result.Returns-------name : strName of the metric.value : floatValue of the evaluation."""self._update() # update metric at this timeif self.num is None:if self.num_inst == 0:return (self.name, float('nan'))else:return (self.name, self.sum_metric / self.num_inst)else:names = ['%s'%(self.name[i]) for i in range(self.num)]values = [x / y if y != 0 else float('nan') \for x, y in zip(self.sum_metric, self.num_inst)]return (names, values)# update方法是更新MAp值的方法,目的是更新self.records变量。然后当代码要读取MAp值时就会调用get方法,# 在get方法中通过再调用_update方法计算self.records变量得到MAp值。def update(self, labels, preds):"""Update internal records. This function now only update internal buffer,sum_metric and num_inst are updated in _update() function instead whenget() is called to return results.Params:----------labels: mx.nd.array (n * 6) or (n * 5), difficult column is optional2-d array of ground-truths, n objects(id-xmin-ymin-xmax-ymax-[difficult])preds: mx.nd.array (m * 6)2-d array of detections, m objects(id-score-xmin-ymin-xmax-ymax)"""# IOU计算函数,就是计算两个框的交集面积除以并集面积的结果def iou(x, ys):"""Calculate intersection-over-union overlapParams:----------x : numpy.arraysingle box [xmin, ymin ,xmax, ymax]ys : numpy.arraymultiple box [[xmin, ymin, xmax, ymax], [...], ]Returns:-----------numpy.array[iou1, iou2, ...], size == ys.shape[0]"""ixmin = np.maximum(ys[:, 0], x[0])iymin = np.maximum(ys[:, 1], x[1])ixmax = np.minimum(ys[:, 2], x[2])iymax = np.minimum(ys[:, 3], x[3])iw = np.maximum(ixmax - ixmin, 0.)ih = np.maximum(iymax - iymin, 0.)inters = iw * ihuni = (x[2] - x[0]) * (x[3] - x[1]) + (ys[:, 2] - ys[:, 0]) * \(ys[:, 3] - ys[:, 1]) - intersious = inters / uniious[uni < 1e-12] = 0 # in case bad boxesreturn ious# independant execution for each image# labels变量放的是batch size个图像的N个object的类别和坐标信息(非object的类别用-1表示),# preds则是网络的输出(包含4个,这里取最后一个得到batch size个图像的M个anchor的预测类别、置信度和坐标信息)。# 这个大的for循环就是循环batch中的每张图像。for i in range(labels[0].shape[0]):# get as numpy arrayslabel = labels[0][i].asnumpy()pred = preds[self.pred_idx][i].asnumpy()# calculate for each classwhile (pred.shape[0] > 0):# 每次循环都去pred(二维)的第一行的第一列,该值是第一个anchor的预测类别,后面会把属于该类别的预测值都copy到别的变量,# 然后将pred中该类别的预测值都删掉,所以每次循环时pred[0,0]的值都会变化,变化的次数就是你的类别数cid = int(pred[0, 0])indices = np.where(pred[:, 0].astype(int) == cid)[0]# 如果是背景类别,则从pred变量中删除if cid < 0:pred = np.delete(pred, indices, axis=0)continue# 将属于该预测类别的预测值copy给dets,然后从pred中删除该预测类别的预测值dets = pred[indices]pred = np.delete(pred, indices, axis=0)# sort by score, desceding# 按照置信度从高到低进行排序,records的第二列用来记录每个预测值的tp(truth positive)和fp(false positive)值,# 分别用1和2表示,初始化为0。dets[dets[:,1].argsort()[::-1]]records = np.hstack((dets[:, 1][:, np.newaxis], np.zeros((dets.shape[0], 1))))# ground-truths# label_indices是输入的该图像中object类别等于前面预测的cid类别的object index,并将这些object的类别和位置信息保存在gts变量中label_indices = np.where(label[:, 0].astype(int) == cid)[0]gts = label[label_indices, :]label = np.delete(label, label_indices, axis=0)# 如果真实的object类别和预测的cid类别有交集,则gts.size>0,否则跳过这个条件语句。if gts.size > 0:found = [False] * gts.shape[0]# 这个循环条件是遍历预测的类别值为cid的anchor,对每个anchor都计算其和真实的类别为cid的object框的IOU值。# 取其中最大的IOU值赋给ovmaxfor j in range(dets.shape[0]):# compute overlapsious = iou(dets[j, 2:], gts[:, 1:5])ovargmax = np.argmax(ious)ovmax = ious[ovargmax]# 当IOU大于ovp_thresh时候,因为gts.shape[1]==5,所以执行 records[j, -1] = 1# 和found[ovargmax] = True。如果IOU没有达到这个阈值,则还是false positive。if ovmax > self.ovp_thresh:if (not self.use_difficult andgts.shape[1] >= 6 andgts[ovargmax, 5] > 0):passelse:if not found[ovargmax]:records[j, -1] = 1 # tpfound[ovargmax] = Trueelse:# duplicaterecords[j, -1] = 2 # fpelse:# 这里相当于预测的类别在图像的所有object类别中都不存在,所以都是false positiverecords[j, -1] = 2 # fpelse:# no gt, mark all fprecords[:, -1] = 2# ground truth countif (not self.use_difficult and gts.shape[1] >= 6):gt_count = np.sum(gts[:, 5] < 1)else:gt_count = gts.shape[0]# now we push records to buffer# first column: score, second column: tp/fp# 0: not set(matched to difficult or something), 1: tp, 2: fp# 过滤掉records中既不是fp也不是tp的预测值,然后将符合条件的records通过_insert方法插入到self.records,# 最后得到的self.records就是整个batch的总结果。records = records[np.where(records[:, -1] > 0)[0], :]if records.size > 0:self._insert(cid, records, gt_count)# add missing class if not present in predictionwhile (label.shape[0] > 0):cid = int(label[0, 0])label_indices = np.where(label[:, 0].astype(int) == cid)[0]label = np.delete(label, label_indices, axis=0)if cid < 0:continuegt_count = label_indices.sizeself._insert(cid, np.array([[0, 0]]), gt_count)#_update方法是作者自定义的一个内部方法,用来帮助算法在调用get方法的时候获取所需的计算值,要注意和update方法的差别。# 该方法基于前面update方法计算得到的sel.records来计算ap,self.records是一个包含number class个键值对的字典。# recall, prec = self._recall_prec(v, self.counts[k])是计算recall和precision,# ap = self._average_precision(recall, prec)是计算平均的recall和precision。def _update(self):""" update num_inst and sum_metric """aps = []for k, v in self.records.items():recall, prec = self._recall_prec(v, self.counts[k])ap = self._average_precision(recall, prec)if self.roc_output_path is not None:self.save_roc_graph(recall=recall, prec=prec, classkey=k, path=self.roc_output_path, ap=ap)aps.append(ap)# 因为k值是遍历所有object的类别,所以这里self.sum_metric[k]放的就是k这个类别的ap值。# 因此最后在界面上会显示每个类别的MAp值。if self.num is not None and k < (self.num - 1):self.sum_metric[k] = apself.num_inst[k] = 1if self.num is None:self.num_inst = 1self.sum_metric = np.mean(aps)# 在sum_metric和self.num_inst的最后位置插入平均结果,所以在界面上会显示所有类别的平均MAp值。else:self.num_inst[-1] = 1self.sum_metric[-1] = np.mean(aps)#_recall_prec方法是前面_update方法调用的一个辅助方法。def _recall_prec(self, record, count):""" get recall and precision from internal records """record = np.delete(record, np.where(record[:, 1].astype(int) == 0)[0], axis=0)sorted_records = record[record[:,0].argsort()[::-1]]tp = np.cumsum(sorted_records[:, 1].astype(int) == 1)fp = np.cumsum(sorted_records[:, 1].astype(int) == 2)if count <= 0:recall = tp * 0.0else:recall = tp / float(count)prec = tp.astype(float) / (tp + fp)return recall, precdef _average_precision(self, rec, prec):"""calculate average precisionParams:----------rec : numpy.arraycumulated recallprec : numpy.arraycumulated precisionReturns:----------ap as float"""# append sentinel values at both endsmrec = np.concatenate(([0.], rec, [1.]))mpre = np.concatenate(([0.], prec, [0.]))# compute precision integration ladderfor i in range(mpre.size - 1, 0, -1):mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])# look for recall value changesi = np.where(mrec[1:] != mrec[:-1])[0]# sum (\delta recall) * precap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])return ap# 将有效的records插入到self.records变量中def _insert(self, key, records, count):""" Insert records according to key """if key not in self.records:assert key not in self.countsself.records[key] = recordsself.counts[key] = countelse:self.records[key] = np.vstack((self.records[key], records))assert key in self.countsself.counts[key] += countclass VOC07MApMetric(MApMetric):""" Mean average precision metric for PASCAL V0C 07 dataset """def __init__(self, *args, **kwargs):super(VOC07MApMetric, self).__init__(*args, **kwargs)def _average_precision(self, rec, prec):"""calculate average precision, override the default one,special 11-point metricParams:----------rec : numpy.arraycumulated recallprec : numpy.arraycumulated precisionReturns:----------ap as float"""ap = 0.for t in np.arange(0., 1.1, 0.1):if np.sum(rec >= t) == 0:p = 0else:p = np.max(prec[rec >= t])ap += p / 11.return ap
