SSD算法是 object detection 领域比较经典的算法,github 上有一个写得比较好的 MXNet 版本的实现代码,项目地址:https://github.com/zhreshold/mxnet-ssd,目前该项目代码也已经并入MXNet官方 github。想要本地实现可以参考项目地址中 README.md 的介绍或者参考博客:SSD 算法的 MXNet 实现。
接下来这一系列博客想介绍该代码中关于实现 SSD 算法的一些细节,也会涉及部分 Python 语言的巧妙代码,以训练模型为切入口展开介绍,最好按顺序阅读,详细注释已经在代码中给出。
这一篇博客介绍训练模型的入口代码:train.py 脚本,该脚本主要包含一些参数设置和主函数。
import argparseimport tools.find_mxnetimport mxnet as mximport osimport sysfrom train.train_net import train_netdef parse_args():parser = argparse.ArgumentParser(description='Train a Single-shot detection network')parser.add_argument('--train-path', dest='train_path', help='train record to use',default=os.path.join(os.getcwd(), 'data', 'train.rec'), type=str)parser.add_argument('--train-list', dest='train_list', help='train list to use',default="", type=str)parser.add_argument('--val-path', dest='val_path', help='validation record to use',default=os.path.join(os.getcwd(), 'data', 'val.rec'), type=str)parser.add_argument('--val-list', dest='val_list', help='validation list to use',default="", type=str)parser.add_argument('--network', dest='network', type=str, default='vgg16_reduced',help='which network to use')parser.add_argument('--batch-size', dest='batch_size', type=int, default=32,help='training batch size')parser.add_argument('--resume', dest='resume', type=int, default=-1,help='resume training from epoch n')parser.add_argument('--finetune', dest='finetune', type=int, default=-1,help='finetune from epoch n, rename the model before doing this')parser.add_argument('--pretrained', dest='pretrained', help='pretrained model prefix',default=os.path.join(os.getcwd(), 'model', 'vgg16_reduced'), type=str)parser.add_argument('--epoch', dest='epoch', help='epoch of pretrained model',default=1, type=int)parser.add_argument('--prefix', dest='prefix', help='new model prefix',default=os.path.join(os.getcwd(), 'model', 'ssd'), type=str)parser.add_argument('--gpus', dest='gpus', help='GPU devices to train with',default='0', type=str)parser.add_argument('--begin-epoch', dest='begin_epoch', help='begin epoch of training',default=0, type=int)parser.add_argument('--end-epoch', dest='end_epoch', help='end epoch of training',default=240, type=int)parser.add_argument('--frequent', dest='frequent', help='frequency of logging',default=20, type=int)parser.add_argument('--data-shape', dest='data_shape', type=int, default=300,help='set image shape')parser.add_argument('--label-width', dest='label_width', type=int, default=350,help='force padding label width to sync across train and validation')parser.add_argument('--lr', dest='learning_rate', type=float, default=0.004,help='learning rate')parser.add_argument('--momentum', dest='momentum', type=float, default=0.9,help='momentum')parser.add_argument('--wd', dest='weight_decay', type=float, default=0.0005,help='weight decay')parser.add_argument('--mean-r', dest='mean_r', type=float, default=123,help='red mean value')parser.add_argument('--mean-g', dest='mean_g', type=float, default=117,help='green mean value')parser.add_argument('--mean-b', dest='mean_b', type=float, default=104,help='blue mean value')parser.add_argument('--lr-steps', dest='lr_refactor_step', type=str, default='80, 160',help='refactor learning rate at specified epochs')parser.add_argument('--lr-factor', dest='lr_refactor_ratio', type=str, default=0.1,help='ratio to refactor learning rate')parser.add_argument('--freeze', dest='freeze_pattern', type=str, default="^(conv1_|conv2_).*",help='freeze layer pattern')parser.add_argument('--log', dest='log_file', type=str, default="train.log",help='save training log to file')parser.add_argument('--monitor', dest='monitor', type=int, default=0,help='log network parameters every N iters if larger than 0')parser.add_argument('--pattern', dest='monitor_pattern', type=str, default=".*",help='monitor parameter pattern, as regex')parser.add_argument('--num-class', dest='num_class', type=int, default=20,help='number of classes')parser.add_argument('--num-example', dest='num_example', type=int, default=16551,help='number of image examples')parser.add_argument('--class-names', dest='class_names', type=str,default='aeroplane, bicycle, bird, boat, bottle, bus, \car, cat, chair, cow, diningtable, dog, horse, motorbike, \person, pottedplant, sheep, sofa, train, tvmonitor',help='string of comma separated names, or text filename')parser.add_argument('--nms', dest='nms_thresh', type=float, default=0.45,help='non-maximum suppression threshold')parser.add_argument('--overlap', dest='overlap_thresh', type=float, default=0.5,help='evaluation overlap threshold')parser.add_argument('--force', dest='force_nms', type=bool, default=False,help='force non-maximum suppression on different class')parser.add_argument('--use-difficult', dest='use_difficult', type=bool, default=False,help='use difficult ground-truths in evaluation')parser.add_argument('--voc07', dest='use_voc07_metric', type=bool, default=True,help='use PASCAL VOC 07 11-point metric')args = parser.parse_args()return argsdef parse_class_names(args):""" parse # classes and class_names if applicable """num_class = args.num_classif len(args.class_names) > 0:if os.path.isfile(args.class_names):with open(args.class_names, 'r') as f:class_names = [l.strip() for l in f.readlines()]else:class_names = [c.strip() for c in args.class_names.split(',')]assert len(class_names) == num_class, str(len(class_names))for name in class_names:assert len(name) > 0else:class_names = Nonereturn class_namesif __name__ == '__main__':args = parse_args()ctx = [mx.gpu(int(i)) for i in args.gpus.split(',') if i.strip()]ctx = [mx.cpu()] if not ctx else ctxclass_names = parse_class_names(args)train_net(args.network, args.train_path,args.num_class, args.batch_size,args.data_shape, [args.mean_r, args.mean_g, args.mean_b],args.resume, args.finetune, args.pretrained,args.epoch, args.prefix, ctx, args.begin_epoch, args.end_epoch,args.frequent, args.learning_rate, args.momentum, args.weight_decay,args.lr_refactor_step, args.lr_refactor_ratio,val_path=args.val_path,num_example=args.num_example,class_names=class_names,label_pad_width=args.label_width,freeze_layer_pattern=args.freeze_pattern,iter_monitor=args.monitor,monitor_pattern=args.monitor_pattern,log_file=args.log_file,nms_thresh=args.nms_thresh,force_nms=args.force_nms,ovp_thresh=args.overlap_thresh,use_difficult=args.use_difficult,voc07_metric=args.use_voc07_metric)
