公元前5世纪,芝诺发表了著名的阿基里斯悖论,四大悖论之一。

他提出让乌龟在阿基里斯前面1000米处开始,和阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的10倍。当比赛开始后,若阿基里斯跑了1000米,设所用的时间为t,此时乌龟便领先他100米;当阿基里斯跑完下一个100米时,他所用的时间为t/10,乌龟仍然前于他10米;当阿基里斯跑完下一个10米时,他所用的时间为t/100,乌龟仍然前于他1米…… 芝诺认为,阿基里斯能够继续逼近乌龟,但决不可能追上它。

关于阿基里斯悖论的一个解释是:阿基里斯的确永远也追不上乌龟。虽然现实中我们知道阿基里斯超越乌龟非常简单,但是它是如何超过乌龟的在过去却一直存在争论。

现代物理学已经证明了时间和空间不是可以无限分割的,所以总有最为微小的一个时间里,阿基里斯和乌龟共同前进了一个空间单位,从此阿基里斯顺利超过乌龟。

芝诺悖论的产生原因,是在于“芝诺时”不可能度量阿基里斯追上乌龟后的现象。在芝诺时达到无限后,正常计时仍可以进行,只不过芝诺的“钟”已经无法度量它们了。 这个悖论实际上是反映时空并不是无限可分的,运动也不是连续的。

通俗一点讲,我们都知道一条线是由无数个点组成的,但这个“无数个点”并不能说我们无法画出一条线。也就是说就是芝诺偷换了概念,(1+0.1+0.01+……)t其实是一个有限的时间,但他认为这个时间是无限大的,只要时间超过(1+0.1+0.01+……)t 阿基里斯就追上了乌龟。

悖论# #哲学