一、题目
给你一个由 ‘1’(陆地)和 ‘0’(水)组成的的二维网格,请你计算网格中岛屿的数量。
岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。
此外,你可以假设该网格的四条边均被水包围。
点击查看原题
难度级别: 中等
二、思路
1)DFS
使用visited记录进行深度搜索过的空格,不会重复计数岛屿(这里可以使用原本的数组空间进行优化,这里本着不想更改源数据的想法进行编码),每进行一次dfs,岛屿数量自增一
2)并查集
并查集可以将连在一起的格子都指向一个根节点,将二维数组一维化,就可以使用并查集进行解题
三、代码
1)DFS
class Solution {private boolean[][] visited;private int[][] dirs = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};public int numIslands(char[][] grid) {visited = new boolean[grid.length][grid[0].length];int ans = 0;for (int i = 0; i < grid.length; i++) {for (int j = 0; j < grid[0].length; j++) {if (visited[i][j] == false && grid[i][j] == '1') {dfs(grid, i, j);ans++;}}}return ans;}public void dfs(char[][] grid, int row, int col) {if (grid[row][col] == '0') {return ;}visited[row][col] = true;for (int[] dir : dirs) {int newRow = row + dir[0];int newCol = col + dir[1];if (newRow >= 0 && newRow < grid.length&& newCol >= 0 && newCol < grid[0].length&& visited[newRow][newCol] == false) {dfs(grid, newRow, newCol);}}}}
2)并查集
class Solution {public int numIslands(char[][] grid) {int oneCnt = 0;UnionFind uf = new UnionFind(grid.length * grid[0].length);int[][] dirs = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};for (int i = 0; i < grid.length; i++) {for (int j = 0; j < grid[0].length; j++) {if (grid[i][j] == '1') {oneCnt++;for (int[] dir : dirs) {int newI = i + dir[0];int newJ = j + dir[1];if (newI >= 0 && newI < grid.length&& newJ >= 0 && newJ < grid[0].length&& grid[newI][newJ] == '1') {uf.union(i*grid[0].length + j, newI *grid[0].length + newJ);}}}}}return oneCnt - uf.getMeregeCnt();}}class UnionFind {private int[] ranks;private int[] parents;private int meregeCnt = 0;public UnionFind(int n) {ranks = new int[n+1];parents = new int[n+1];for (int i = 1; i < n; i++) {parents[i] = i;}}public int findParent(int x) {if (parents[x] != x) {parents[x] = findParent(parents[x]);}return parents[x];}public void union(int x, int y) {int xP = findParent(x);int yP = findParent(y);if (xP == yP) {return ;}if (ranks[xP] > ranks[yP]) {parents[yP] = xP;} else if (ranks[xP] < ranks[yP]) {parents[xP] = yP;} else {parents[yP] = xP;ranks[xP]++;}meregeCnt++;}public int getMeregeCnt() {return meregeCnt;}}
a是四次union的时间,时间复杂度为O(m*n*a),空间复杂度为O(m*n)
