给定一个二叉树,判断它是否是高度平衡的二叉树。
本题中,一棵高度平衡二叉树定义为:
一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1 。
示例 1:
输入:root = [3,9,20,null,null,15,7]
输出:true
示例 2:
输入:root = [1,2,2,3,3,null,null,4,4]
输出:false
示例 3:
输入:root = []
输出:true
提示:
- 树中的节点数在范围
[0, 5000]
内 -10 <= Node.val <= 10
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: bool isBalanced(TreeNode* root) { if(root == NULL) return true; int left_depth = depth(root->left); int right_depth = depth(root->right); if(abs(left_depth - right_depth) > 1){ return false; } return isBalanced(root->left) && isBalanced(root->right); } int depth(TreeNode* root){ if(root == NULL) return 0; return max(depth(root->left),depth(root->right)) + 1; } };
```cpp /**
- Definition for a binary tree node.
- struct TreeNode {
- int val;
- TreeNode *left;
- TreeNode *right;
- TreeNode(int x) : val(x), left(NULL), right(NULL) {}
- };
/
class Solution {
public:
bool isBalanced(TreeNode root) {
} bool isBalanced(TreeNode* root, int& depth){int depth = 0; return isBalanced(root, depth);
}if(root == NULL) { depth = 0; return true; } int left, right; if(isBalanced(root->left, left) && isBalanced(root->right, right)){ int diff = abs(left - right); if(diff <= 1){ depth = max(left, right) + 1; return true; } } return false;
}; ```