给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
例如,给定如下二叉树: root = [3,5,1,6,2,0,8,null,null,7,4]

 
示例 1:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1输出: 3解释: 节点 5 和节点 1 的最近公共祖先是节点 3。
示例 2:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
输出: 5
解释: 节点 5 和节点 4 的最近公共祖先是节点 5。因为根据定义最近公共祖先节点可以为节点本身。
 
说明:
- 所有节点的值都是唯一的。
 - p、q 为不同节点且均存在于给定的二叉树中。
 
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        TreeNode* ancestor = root;
        while (true) {
            if (p->val < ancestor->val && q->val < ancestor->val) {
                ancestor = ancestor->left;
            }
            else if (p->val > ancestor->val && q->val > ancestor->val) {
                ancestor = ancestor->right;
            }
            else {
                break;
            }
        }
        return ancestor;
    }
};
                    