给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
例如,给定如下二叉树:  root = [3,5,1,6,2,0,8,null,null,7,4]![[236]二叉树的最近公共祖先 - 图1](/uploads/projects/instellar@ab8afo/c747b13aa35ffa73cbd5070d5898d7ca.png)
 
示例 1:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1输出: 3解释: 节点 5 和节点 1 的最近公共祖先是节点 3。
示例 2:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
输出: 5
解释: 节点 5 和节点 4 的最近公共祖先是节点 5。因为根据定义最近公共祖先节点可以为节点本身。
 
说明:
- 所有节点的值都是唯一的。
 - p、q 为不同节点且均存在于给定的二叉树中。
 
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        if(root == NULL || root == p || root == q) 
        return root;
        TreeNode* left =  lowestCommonAncestor(root->left, p, q);
        TreeNode* right = lowestCommonAncestor(root->right, p, q);
        if(left != NULL && right != NULL){
            return root;
        }
        return left == NULL ? right : left;
    }
};
                    