PyTorch
PyTorch提供的两个Dataset和DataLoader类分别负责可被Pytorch使用的数据集的创建以及向训练传递数据的任务。如果想个性化自己的数据集或者数据传递方式,也可以自己重写子类。
Dataset是**DataLoader**实例化的一个参数。
什么时候使用Dataset
CIFAR10是CV训练中经常使用到的一个数据集,在PyTorch中CIFAR10是一个写好的Dataset,使用时只需以下代码:
data = datasets.CIFAR10("./data/", transform=transform, train=True, download=True)
datasets.CIFAR10就是一个Datasets子类,data是这个类的一个实例。
有的时候需要用自己在一个文件夹中的数据作为数据集,这个时候,可以使用ImageFolder这个方便的API。
FaceDataset = datasets.ImageFolder('./data', transform=img_transform)
如何自定义一个数据集?
**torch.utils.data.Dataset** 是一个表示数据集的抽象类。任何自定义的数据集都需要继承这个类并覆写相关方法。
所谓数据集,其实就是一个负责处理索引(index)到样本(sample)映射的一个类(class)。
Pytorch提供两种数据集:Map式数据集;Iterable式数据集。
Map式数据集
一个Map式的数据集必须要重写**getitem(self, index),len(self)** 两个内建方法,用来表示从索引到样本的映射(Map)。
这样一个数据集dataset,举个例子,当使用dataset[idx]命令时,可以在硬盘中读取数据集中第idx张图片以及其标签(如果有的话);len(dataset)则会返回这个数据集的容量。
自定义类大致是这样的:
class CustomDataset(data.Dataset):#需要继承data.Datasetdef __init__(self):# TODO# 1. Initialize file path or list of file names.passdef __getitem__(self, index):# TODO# 1. Read one data from file (e.g. using numpy.fromfile, PIL.Image.open).# 2. Preprocess the data (e.g. torchvision.Transform).# 3. Return a data pair (e.g. image and label).#这里需要注意的是,第一步:read one data,是一个datapassdef __len__(self):# You should change 0 to the total size of your dataset.return 0
例子-1:自己实验中写的一个例子:这里图片文件储存在“./data/faces/”文件夹下,图片的名字并不是从1开始,而是从final_train_tag_dict.txt这个文件保存的字典中读取,label信息也是用这个文件中读取。大家可以照着上面的注释阅读这段代码。
from torch.utils import dataimport numpy as npfrom PIL import Imageclass face_dataset(data.Dataset):def __init__(self):self.file_path = './data/faces/'f=open("final_train_tag_dict.txt","r")self.label_dict=eval(f.read())f.close()def __getitem__(self,index):label = list(self.label_dict.values())[index-1]img_id = list(self.label_dict.keys())[index-1]img_path = self.file_path+str(img_id)+".jpg"img = np.array(Image.open(img_path))return img,labeldef __len__(self):return len(self.label_dict)
下面看一下官方MNIST数据集的例子:
class MNIST(data.Dataset):"""`MNIST <http://yann.lecun.com/exdb/mnist/>`_ Dataset.Args:root (string): Root directory of dataset where ``processed/training.pt``and ``processed/test.pt`` exist.train (bool, optional): If True, creates dataset from ``training.pt``,otherwise from ``test.pt``.download (bool, optional): If true, downloads the dataset from the internet andputs it in root directory. If dataset is already downloaded, it is notdownloaded again.transform (callable, optional): A function/transform that takes in an PIL imageand returns a transformed version. E.g, ``transforms.RandomCrop``target_transform (callable, optional): A function/transform that takes in thetarget and transforms it."""urls = ['http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz','http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz','http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz','http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz',]raw_folder = 'raw'processed_folder = 'processed'training_file = 'training.pt'test_file = 'test.pt'classes = ['0 - zero', '1 - one', '2 - two', '3 - three', '4 - four','5 - five', '6 - six', '7 - seven', '8 - eight', '9 - nine']class_to_idx = {_class: i for i, _class in enumerate(classes)}@propertydef targets(self):if self.train:return self.train_labelselse:return self.test_labelsdef __init__(self, root, train=True, transform=None, target_transform=None, download=False):self.root = os.path.expanduser(root)self.transform = transformself.target_transform = target_transformself.train = train # training set or test setif download:self.download()if not self._check_exists():raise RuntimeError('Dataset not found.' +' You can use download=True to download it')if self.train:self.train_data, self.train_labels = torch.load(os.path.join(self.root, self.processed_folder, self.training_file))else:self.test_data, self.test_labels = torch.load(os.path.join(self.root, self.processed_folder, self.test_file))def __getitem__(self, index):"""Args:index (int): IndexReturns:tuple: (image, target) where target is index of the target class."""if self.train:img, target = self.train_data[index], self.train_labels[index]else:img, target = self.test_data[index], self.test_labels[index]# doing this so that it is consistent with all other datasets# to return a PIL Imageimg = Image.fromarray(img.numpy(), mode='L')if self.transform is not None:img = self.transform(img)if self.target_transform is not None:target = self.target_transform(target)return img, targetdef __len__(self):if self.train:return len(self.train_data)else:return len(self.test_data)def _check_exists(self):return os.path.exists(os.path.join(self.root, self.processed_folder, self.training_file)) and \os.path.exists(os.path.join(self.root, self.processed_folder, self.test_file))def download(self):"""Download the MNIST data if it doesn't exist in processed_folder already."""from six.moves import urllibimport gzipif self._check_exists():return# download filestry:os.makedirs(os.path.join(self.root, self.raw_folder))os.makedirs(os.path.join(self.root, self.processed_folder))except OSError as e:if e.errno == errno.EEXIST:passelse:raisefor url in self.urls:print('Downloading ' + url)data = urllib.request.urlopen(url)filename = url.rpartition('/')[2]file_path = os.path.join(self.root, self.raw_folder, filename)with open(file_path, 'wb') as f:f.write(data.read())with open(file_path.replace('.gz', ''), 'wb') as out_f, \gzip.GzipFile(file_path) as zip_f:out_f.write(zip_f.read())os.unlink(file_path)# process and save as torch filesprint('Processing...')training_set = (read_image_file(os.path.join(self.root, self.raw_folder, 'train-images-idx3-ubyte')),read_label_file(os.path.join(self.root, self.raw_folder, 'train-labels-idx1-ubyte')))test_set = (read_image_file(os.path.join(self.root, self.raw_folder, 't10k-images-idx3-ubyte')),read_label_file(os.path.join(self.root, self.raw_folder, 't10k-labels-idx1-ubyte')))with open(os.path.join(self.root, self.processed_folder, self.training_file), 'wb') as f:torch.save(training_set, f)with open(os.path.join(self.root, self.processed_folder, self.test_file), 'wb') as f:torch.save(test_set, f)print('Done!')def __repr__(self):fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'fmt_str += ' Number of datapoints: {}\n'.format(self.__len__())tmp = 'train' if self.train is True else 'test'fmt_str += ' Split: {}\n'.format(tmp)fmt_str += ' Root Location: {}\n'.format(self.root)tmp = ' Transforms (if any): 'fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))tmp = ' Target Transforms (if any): 'fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))return fmt_str
Iterable式数据集
一个Iterable(迭代)式数据集是抽象类**data.IterableDataset**的子类,并且覆写了iter方法成为一个迭代器。这种数据集主要用于数据大小未知,或者以流的形式的输入,本地文件不固定的情况,需要以迭代的方式来获取样本索引。
DataLoader
Data loader. Combines a dataset and a sampler, and provides an iterable over the given dataset. —PyTorch Documents
一般来说PyTorch中深度学习训练的流程是这样的:
- 创建Dateset
- Dataset传递给DataLoader
- DataLoader迭代产生训练数据提供给模型
对应的一般都会有这三部分代码:
# 创建Dateset(可以自定义)dataset = face_dataset # Dataset部分自定义过的face_dataset# Dataset传递给DataLoaderdataloader = torch.utils.data.DataLoader(dataset,batch_size=64,shuffle=False,num_workers=8)# DataLoader迭代产生训练数据提供给模型for i in range(epoch):for index,(img,label) in enumerate(dataloader):pass
到这里应该就PyTorch的数据集和数据传递机制应该就比较清晰明了了。Dataset负责建立索引到样本的映射,**DataLoader**负责以特定的方式从数据集中迭代的产生 一个个batch的样本集合。在enumerate过程中实际上是dataloader按照其参数sampler规定的策略调用了其dataset的getitem方法。
参数介绍
先看一下实例化一个DataLoader所需的参数,只关注几个重点即可。
DataLoader(dataset, batch_size=1, shuffle=False, sampler=None,batch_sampler=None, num_workers=0, collate_fn=None,pin_memory=False, drop_last=False, timeout=0,worker_init_fn=None)
参数介绍:
dataset(Dataset) – 定义好的Map式或者Iterable式数据集。batch_size(python:int, optional) – 一个batch含有多少样本 (default: 1)。shuffle(bool, optional) – 每一个epoch的batch样本是相同还是随机 (default: False)。sampler(Sampler, optional) – 决定数据集中采样的方法. 如果有,则shuffle参数必须为False。batch_sampler(Sampler, optional) – 和 sampler 类似,但是一次返回的是一个batch内所有样本的index。和 batch_size, shuffle, sampler, and drop_last 三个参数互斥。num_workers(python:int, optional) – 多少个子程序同时工作来获取数据,多线程。(default: 0)collate_fn(callable, optional) – 合并样本列表以形成小批量。pin_memory(bool, optional) – 如果为True,数据加载器在返回前将张量复制到CUDA固定内存中。drop_last(bool, optional) – 如果数据集大小不能被batch_size整除,设置为True可删除最后一个不完整的批处理。如果设为False并且数据集的大小不能被batch_size整除,则最后一个batch将更小。(default: False)timeout(numeric, optional) – 如果是正数,表明等待从worker进程中收集一个batch等待的时间,若超出设定的时间还没有收集到,那就不收集这个内容了。这个numeric应总是大于等于0。(default: 0)worker_init_fn(callable, optional*) – 每个worker初始化函数 (default: None)
dataset 没什么好说的,很重要,需要按照前面所说的两种dataset定义好,完成相关函数的重写。
batch_size 也没啥好说的,就是训练的一个批次的样本数。
shuffle 表示每一个epoch中训练样本的顺序是否相同,一般True。
采样器
sampler 重点参数,采样器,是一个迭代器。PyTorch提供了多种采样器,用户也可以自定义采样器。
所有sampler都是继承 torch.utils.data.sampler.Sampler这个抽象类。
class Sampler(object):# """Base class for all Samplers.# Every Sampler subclass has to provide an __iter__ method, providing a way# to iterate over indices of dataset elements, and a __len__ method that# returns the length of the returned iterators.# """# 一个 迭代器 基类def __init__(self, data_source):passdef __iter__(self):raise NotImplementedErrordef __len__(self):raise NotImplementedError
PyTorch自带的Sampler
SequentialSamplerRandomSamplerSubsetRandomSamplerWeightedRandomSampler
**SequentialSampler** 很好理解就是顺序采样器。
其原理是首先在初始化的时候拿到数据集data_source,之后在__iter__方法中首先得到一个和data_source一样长度的range可迭代器。每次只会返回一个索引值。
class SequentialSampler(Sampler):# r"""Samples elements sequentially, always in the same order.# Arguments:# data_source (Dataset): dataset to sample from# """# 产生顺序 迭代器def __init__(self, data_source):self.data_source = data_sourcedef __iter__(self):return iter(range(len(self.data_source)))def __len__(self):return len(self.data_source)
参数作用:
data_source:同上num_samples:指定采样的数量,默认是所有。replacement:若为True,则表示可以重复采样,即同一个样本可以重复采样,这样可能导致有的样本采样不到。所以此时可以设置num_samples来增加采样数量使得每个样本都可能被采样到。
RandomSampler
class RandomSampler(Sampler):# r"""Samples elements randomly. If without replacement, then sample from a shuffled dataset.# If with replacement, then user can specify ``num_samples`` to draw.# Arguments:# data_source (Dataset): dataset to sample from# num_samples (int): number of samples to draw, default=len(dataset)# replacement (bool): samples are drawn with replacement if ``True``, default=False# """def __init__(self, data_source, replacement=False, num_samples=None):self.data_source = data_sourceself.replacement = replacementself.num_samples = num_samplesif self.num_samples is not None and replacement is False:raise ValueError("With replacement=False, num_samples should not be specified, ""since a random permute will be performed.")if self.num_samples is None:self.num_samples = len(self.data_source)if not isinstance(self.num_samples, int) or self.num_samples <= 0:raise ValueError("num_samples should be a positive integeral ""value, but got num_samples={}".format(self.num_samples))if not isinstance(self.replacement, bool):raise ValueError("replacement should be a boolean value, but got ""replacement={}".format(self.replacement))def __iter__(self):n = len(self.data_source)if self.replacement:return iter(torch.randint(high=n, size=(self.num_samples,), dtype=torch.int64).tolist())return iter(torch.randperm(n).tolist())def __len__(self):return len(self.data_source)
这个采样器常见的使用场景是将训练集划分成训练集和验证集:
class SubsetRandomSampler(Sampler):# r"""Samples elements randomly from a given list of indices, without replacement.# Arguments:# indices (sequence): a sequence of indices# """def __init__(self, indices):self.indices = indicesdef __iter__(self):return (self.indices[i] for i in torch.randperm(len(self.indices)))def __len__(self):return len(self.indices)
batch_sampler
前面的采样器每次都只返回一个索引,但是在训练时是对批量的数据进行训练,而这个工作就需要BatchSampler来做。也就是说BatchSampler的作用就是将前面的Sampler采样得到的索引值进行合并,当数量等于一个batch大小后就将这一批的索引值返回。
class BatchSampler(Sampler):# Wraps another sampler to yield a mini-batch of indices.# Args:# sampler (Sampler): Base sampler.# batch_size (int): Size of mini-batch.# drop_last (bool): If ``True``, the sampler will drop the last batch if# its size would be less than ``batch_size``# Example:# >>> list(BatchSampler(SequentialSampler(range(10)), batch_size=3, drop_last=False))# [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]# >>> list(BatchSampler(SequentialSampler(range(10)), batch_size=3, drop_last=True))# [[0, 1, 2], [3, 4, 5], [6, 7, 8]]# 批次采样def __init__(self, sampler, batch_size, drop_last):if not isinstance(sampler, Sampler):raise ValueError("sampler should be an instance of ""torch.utils.data.Sampler, but got sampler={}".format(sampler))if not isinstance(batch_size, _int_classes) or isinstance(batch_size, bool) or \batch_size <= 0:raise ValueError("batch_size should be a positive integeral value, ""but got batch_size={}".format(batch_size))if not isinstance(drop_last, bool):raise ValueError("drop_last should be a boolean value, but got ""drop_last={}".format(drop_last))self.sampler = samplerself.batch_size = batch_sizeself.drop_last = drop_lastdef __iter__(self):batch = []for idx in self.sampler:batch.append(idx)if len(batch) == self.batch_size:yield batchbatch = []if len(batch) > 0 and not self.drop_last:yield batchdef __len__(self):if self.drop_last:return len(self.sampler) // self.batch_sizeelse:return (len(self.sampler) + self.batch_size - 1) // self.batch_size
多线程
num_workers 参数表示同时参与数据读取的线程数量,多线程技术可以加快数据读取,提供GPU/CPU利用率。
