二分查找针对的是一个有序的数据集合,查找思想有点类似分治思想。每次都通过跟区间的中间元素对比,将待查找的区间缩小为之前的一半,直到找到要查找的元素,或者区间被缩小为 0。
时间复杂度为 O(logn)
我们假设数据大小是 n,每次查找后数据都会缩小为原来的一半,也就是会除以 2。最坏情况下,直到查找区间被缩小为空,才停止。
可以看出来,这是一个等比数列。其中 n/2k=1 时,k 的值就是总共缩小的次数。而每一次缩小操作只涉及两个数据的大小比较,所以,经过了 k 次区间缩小操作,时间复杂度就是 O(k)。通过 n/2k=1,我们可以求得 k=log2n,所以时间复杂度就是 O(logn)。
O(logn) 这种对数时间复杂度。这是一种极其高效的时间复杂度,有的时候甚至比时间复杂度是常量级 O(1) 的算法还要高效.
因为 logn 是一个非常“恐怖”的数量级,即便 n 非常非常大,对应的 logn 也很小。比如 n 等于 2 的 32 次方,这个数很大了吧?大约是 42 亿。也就是说,如果我们在 42 亿个数据中用二分查找一个数据,最多需要比较 32 次。对于常量级时间复杂度的算法来说,O(1) 有可能表示的是一个非常大的常量值,比如 O(1000)、O(10000)。所以,常量级时间复杂度的算法有时候可能还没有 O(logn) 的算法执行效率高。
二分查找的递归与非递归实现
循环实现
注意容易出错的 3 个地方
- 循环退出条件注意是 low<=high,而不是low<high
- mid 的取值实际上,mid=(low+high)/2 这种写法是有问题的。因为如果 low 和 high 比较大的话,两者之和就有可能会溢出。改进的方法是将 mid 的计算方式写成 low+(high-low)/2。更进一步,如果要将性能优化到极致的话,我们可以将这里的除以 2 操作转化成位运算 low+((high-low)>>1)。因为相比除法运算来说,计算机处理位运算要快得多。
- low 和 high 的更新low=mid+1,high=mid-1。注意这里的 +1 和 -1,如果直接写成 low=mid 或者 high=mid,就可能会发生死循环。比如,当 high=3,low=3 时,如果 a[3]不等于 value,就会导致一直循环不退出。 ```
public int bsearch(int[] a, int n, int value) { int low = 0; int high = n - 1;
while (low <= high) { int mid = low + ((high - low) >> 1); if (a[mid] == value) { return mid; } else if (a[mid] < value) { low = mid + 1; } else { high = mid - 1; } }
return -1; }
递归实现
// 二分查找的递归实现 public int bsearch(int[] a, int n, int val) { return bsearchInternally(a, 0, n - 1, val); }
private int bsearchInternally(int[] a, int low, int high, int value) { if (low > high) return -1;
int mid = low + ((high - low) >> 1); if (a[mid] == value) { return mid; } else if (a[mid] < value) { return bsearchInternally(a, mid+1, high, value); } else { return bsearchInternally(a, low, mid-1, value); } } ```
二分查找应用场景的局限性
- 二分查找依赖的是顺序表结构,简单点说就是数组。
数组按照下标随机访问数据的时间复杂度是 O(1),而链表随机访问的时间复杂度是 O(n)。所以,如果数据使用链表存储,二分查找的时间复杂就会变得很高。
- 二分查找针对的是有序数据
二分查找只能用在插入、删除操作不频繁,一次排序多次查找的场景中。针对动态变化的数据集合,二分查找将不再适用。
- 数据量太小或太大都不适合二分查找
太小的数据量, 顺序遍历就足够了, 这里有一个例外。如果数据之间的比较操作非常耗时,不管数据量大小,我都推荐使用二分查找。比如,数组中存储的都是长度超过 300 的字符串,如此长的两个字符串之间比对大小,就会非常耗时。
数组为了支持随机访问的特性,要求内存空间连续,对内存的要求比较苛刻。太大的数据用数组存储就比较吃力了,也就不能用二分查找了。