散列表用的是数组支持按照下标随机访问数据的特性,所以散列表其实就是数组的一种扩展,由数组演化而来。

通过散列函数将元素的键值映射为下标, 然后将数据存储在数组中对应下标的位置, 当我们按照键值查询元素时, 我们用同样的散列函数, 将键值转换为数组下表, 从对应的数组下表位置取数据.

散列函数

如何构造散列函数?

  1. 要求计算得到的散列值是一个非负整数
  2. 如果key1=key2. 那hash(key1)=hash(key2);
  3. 如果key2!=key2, 那hash(key1)!=hash(key2);

第三点无法实现, 在真实的情况下,要想找到一个不同的 key 对应的散列值都不一样的散列函数,几乎是不可能的。即便像业界著名的MD5、SHA、CRC等哈希算法,也无法完全避免这种散列冲突。而且,因为数组的存储空间有限,也会加大散列冲突的概率。

散列冲突

常用的解决冲突的方法: 开放寻址法(open addressing)和链表法(chaining)。

开放寻址法

开放寻址法的核心思想是,如果出现了散列冲突,我们就重新探测一个空闲位置,将其插入。

如简单的线性探测

  • 从冲突的当前位置依次往后查找, 如下图, 位置7冲突后, 依次找到位置2;
  • 查找的时候若冲突了也需要按这种方式查找
  • 删除的时候会将删除的元素位置标记为Deleted, 当线性探测查找到deleted的空间不停下来, 继续向下探测

散列表 - 图1

对于开放寻址冲突解决方法,除了线性探测方法之外,还有另外两种比较经典的探测方法,二次探测(Quadratic probing)和双重散列(Double hashing)。

线性探测法的问题: 当散列表中插入的数据越来越多时, 散列冲突发生的可能性就越来越大, 空闲位置越来越少, 线性探测的时间会越来越久.

为了尽可能保证散列表的操作效率,一般情况下,我们会尽可能保证散列表中有一定比例的空闲槽位。我们用装载因子(load factor)来表示空位的多少。

  1. 装载因子的计算公式是:
  2. 散列表的装载因子=填入表中的元素个数/散列表的长度

装载因子越大,说明空闲位置越少,冲突越多,散列表的性能会下降。

链表法

在散列表中,每个“桶(bucket)”或者“槽(slot)”会对应一条链表,所有散列值相同的元素我们都放到相同槽位对应的链表中。
散列表 - 图2

查找和删除操作的时间复杂度跟链表的长度 k 成正比,也就是 O(k)。对于散列比较均匀的散列函数来说,理论上讲,k=n/m,其中 n 表示散列中数据的个数,m 表示散列表中“槽”的个数。

如何打造一个工业级水平的散列表?

总结:散列表(中)
面试题目:如何设计一个工业级的散列函数?
思路:
何为一个工业级的散列表?工业级的散列表应该具有哪些特性?结合学过的知识,我觉的应该有这样的要求:
1.支持快速的查询、插入、删除操作;
2.内存占用合理,不能浪费过多空间;
3.性能稳定,在极端情况下,散列表的性能也不会退化到无法接受的情况。
方案:
如何设计这样一个散列表呢?根据前面讲到的知识,我会从3个方面来考虑设计思路:
1.设计一个合适的散列函数;
2.定义装载因子阈值,并且设计动态扩容策略;
3.选择合适的散列冲突解决方法。
知识总结:
一、如何设计散列函数?
1.要尽可能让散列后的值随机且均匀分布,这样会尽可能减少散列冲突,即便冲突之后,分配到每个槽内的数据也比较均匀。
2.除此之外,散列函数的设计也不能太复杂,太复杂就会太耗时间,也会影响到散列表的性能。
3.常见的散列函数设计方法:直接寻址法、平方取中法、折叠法、随机数法等。
二、如何根据装载因子动态扩容?
1.如何设置装载因子阈值?
①可以通过设置装载因子的阈值来控制是扩容还是缩容,支持动态扩容的散列表,插入数据的时间复杂度使用摊还分析法。
②装载因子的阈值设置需要权衡时间复杂度和空间复杂度。如何权衡?如果内存空间不紧张,对执行效率要求很高,可以降低装载因子的阈值;相反,如果内存空间紧张,对执行效率要求又不高,可以增加装载因子的阈值。
2.如何避免低效扩容?分批扩容
①分批扩容的插入操作:当有新数据要插入时,我们将数据插入新的散列表,并且从老的散列表中拿出一个数据放入新散列表。每次插入都重复上面的过程。这样插入操作就变得很快了。
②分批扩容的查询操作:先查新散列表,再查老散列表。
③通过分批扩容的方式,任何情况下,插入一个数据的时间复杂度都是O(1)。
三、如何选择散列冲突解决方法?
①常见的2中方法:开放寻址法和链表法。
②大部分情况下,链表法更加普适。而且,我们还可以通过将链表法中的链表改造成其他动态查找数据结构,比如红黑树、跳表,来避免散列表时间复杂度退化成O(n),抵御散列冲突攻击。
③但是,对于小规模数据、装载因子不高的散列表,比较适合用开放寻址法。

为什么散列表和链表经常会一起使用?

带着问题去学习:
1.为什么散列表和链表经常放在一起使用?
2.散列表和链表如何组合起来使用?
一、为什么散列表和链表经常放在一起使用?
1.散列表的优点:支持高效的数据插入、删除和查找操作
2.散列表的缺点:不支持快速顺序遍历散列表中的数据
3.如何按照顺序快速遍历散列表的数据?只能将数据转移到数组,然后排序,最后再遍历数据。
4.我们知道散列表是动态的数据结构,需要频繁的插入和删除数据,那么每次顺序遍历之前都需要先排序,这势必会造成效率非常低下。
5.如何解决上面的问题呢?就是将散列表和链表(或跳表)结合起来使用。
二、散列表和链表如何组合起来使用?
1.LRU(Least Recently Used)缓存淘汰算法
1.1.LRU缓存淘汰算法主要操作有哪些?主要包含3个操作:
①往缓存中添加一个数据;
②从缓存中删除一个数据;
③在缓存中查找一个数据;
④总结:上面3个都涉及到查找。
1.2.如何用链表实现LRU缓存淘汰算法?
①需要维护一个按照访问时间从大到小的有序排列的链表结构。
②缓冲空间有限,当空间不足需要淘汰一个数据时直接删除链表头部的节点。
③当要缓存某个数据时,先在链表中查找这个数据。若未找到,则直接将数据放到链表的尾部。若找到,就把它移动到链表尾部。
④前面说了,LRU缓存的3个主要操作都涉及到查找,若单纯由链表实现,查找的时间复杂度很高为O(n)。若将链表和散列表结合使用,查找的时间复杂度会降低到O(1)。
1.3.如何使用散列表和链表实现LRU缓存淘汰算法?
①使用双向链表存储数据,链表中每个节点存储数据(data)、前驱指针(prev)、后继指针(next)和hnext指针(解决散列冲突的链表指针)。
②散列表通过链表法解决散列冲突,所以每个节点都会在两条链中。一条链是双向链表,另一条链是散列表中的拉链。前驱和后继指针是为了将节点串在双向链表中,hnext指针是为了将节点串在散列表的拉链中。
③LRU缓存淘汰算法的3个主要操作如何做到时间复杂度为O(1)呢?
首先,我们明确一点就是链表本身插入和删除一个节点的时间复杂度为O(1),因为只需更改几个指针指向即可。
接着,来分析查找操作的时间复杂度。当要查找一个数据时,通过散列表可实现在O(1)时间复杂度找到该数据,再加上前面说的插入或删除的时间复杂度是O(1),所以我们总操作的时间复杂度就是O(1)。
2.Redis有序集合
2.1.什么是有序集合?
①在有序集合中,每个成员对象有2个重要的属性,即key(键值)和score(分值)。
②不仅会通过score来查找数据,还会通过key来查找数据。
2.2.有序集合的操作有哪些?
举个例子,比如用户积分排行榜有这样一个功能:可以通过用户ID来查找积分信息,也可以通过积分区间来查找用户ID。这里用户ID就是key,积分就是score。所以,有序集合的操作如下:
①添加一个对象;
②根据键值删除一个对象;
③根据键值查找一个成员对象;
④根据分值区间查找数据,比如查找积分在[100.356]之间的成员对象;
⑤按照分值从小到大排序成员变量。
这时可以按照分值将成员对象组织成跳表结构,按照键值构建一个散列表。那么上面的所有操作都非常高效。
3.Java LinkedHashMap
和LRU缓存淘汰策略实现一模一样。支持按照插入顺序遍历数据,也支持按照访问顺序遍历数据。
三、课后思考
1.上面所讲的几个散列表和链表组合的例子里,我们都是使用双向链表。如果把双向链表改成单链表,还能否正常工作?为什么呢?
2.假设猎聘网有10万名猎头,每个猎头可以通过做任务(比如发布职位)来积累积分,然后通过积分来下载简历。假设你是猎聘网的一名工程师,如何在内存中存储这10万个猎头的ID和积分信息,让它能够支持这样几个操作:
1)根据猎头ID查收查找、删除、更新这个猎头的积分信息;
2)查找积分在某个区间的猎头ID列表;
3)查找按照积分从小到大排名在第x位到第y位之间的猎头ID列表。