Guarded Suspension模式:等待唤醒机制的规范实现
Guarded Suspension 模式
保护性地暂停
下图就是 Guarded Suspension 模式的结构图,非常简单,一个对象 GuardedObject,内部有一个成员变量——受保护的对象,以及两个成员方法——get(Predicate p)和onChanged(T obj)方法。其中,对象 GuardedObject 就是我们前面提到的大堂经理,受保护对象就是餐厅里面的包间;受保护对象的 get() 方法对应的是我们的就餐,就餐的前提条件是包间已经收拾好了,参数 p 就是用来描述这个前提条件的;受保护对象的 onChanged() 方法对应的是服务员把包间收拾好了,通过 onChanged() 方法可以 fire 一个事件,而这个事件往往能改变前提条件 p 的计算结果。下图中,左侧的绿色线程就是需要就餐的顾客,而右侧的蓝色线程就是收拾包间的服务员。
class GuardedObject<T>{
//受保护的对象
T obj;
final Lock lock =
new ReentrantLock();
final Condition done =
lock.newCondition();
final int timeout=1;
//获取受保护对象
T get(Predicate<T> p) {
lock.lock();
try {
//MESA管程推荐写法
while(!p.test(obj)){
done.await(timeout,
TimeUnit.SECONDS);
}
}catch(InterruptedException e){
throw new RuntimeException(e);
}finally{
lock.unlock();
}
//返回非空的受保护对象
return obj;
}
//事件通知方法
void onChanged(T obj) {
lock.lock();
try {
this.obj = obj;
done.signalAll();
} finally {
lock.unlock();
}
}
}
解决问题示例
//处理浏览器发来的请求
Respond handleWebReq(){
//创建一消息
Message msg1 = new
Message("1","{...}");
//发送消息
send(msg1);
//利用GuardedObject实现等待
GuardedObject<Message> go
=new GuardObjec<>();
Message r = go.get(
t->t != null);
}
void onMessage(Message msg){
//如何找到匹配的go?
GuardedObject<Message> go=???
go.onChanged(msg);
}
扩展 Guarded Suspension 模式
class GuardedObject<T>{
//受保护的对象
T obj;
final Lock lock =
new ReentrantLock();
final Condition done =
lock.newCondition();
final int timeout=2;
//保存所有GuardedObject
final static Map<Object, GuardedObject>
gos=new ConcurrentHashMap<>();
//静态方法创建GuardedObject
static <K> GuardedObject
create(K key){
GuardedObject go=new GuardedObject();
gos.put(key, go);
return go;
}
static <K, T> void
fireEvent(K key, T obj){
GuardedObject go=gos.remove(key);
if (go != null){
go.onChanged(obj);
}
}
//获取受保护对象
T get(Predicate<T> p) {
lock.lock();
try {
//MESA管程推荐写法
while(!p.test(obj)){
done.await(timeout,
TimeUnit.SECONDS);
}
}catch(InterruptedException e){
throw new RuntimeException(e);
}finally{
lock.unlock();
}
//返回非空的受保护对象
return obj;
}
//事件通知方法
void onChanged(T obj) {
lock.lock();
try {
this.obj = obj;
done.signalAll();
} finally {
lock.unlock();
}
}
}
解决问题
//处理浏览器发来的请求
Respond handleWebReq(){
int id=序号生成器.get();
//创建一消息
Message msg1 = new
Message(id,"{...}");
//创建GuardedObject实例
GuardedObject<Message> go=
GuardedObject.create(id);
//发送消息
send(msg1);
//等待MQ消息
Message r = go.get(
t->t != null);
}
void onMessage(Message msg){
//唤醒等待的线程
GuardedObject.fireEvent(
msg.id, msg);
}
Balking模式:再谈线程安全的单例模式
编辑器提供的自动保存功能。自动保存功能的实现逻辑一般都是隔一定时间自动执行存盘操作,存盘操作的前提是文件做过修改,如果文件没有执行过修改操作,就需要快速放弃存盘操作。
下面的示例代码将自动保存功能代码化了,很显然 AutoSaveEditor 这个类不是线程安全的,因为对共享变量 changed 的读写没有使用同步,那如何保证 AutoSaveEditor 的线程安全性呢?
class AutoSaveEditor{
//文件是否被修改过
boolean changed=false;
//定时任务线程池
ScheduledExecutorService ses =
Executors.newSingleThreadScheduledExecutor();
//定时执行自动保存
void startAutoSave(){
ses.scheduleWithFixedDelay(()->{
autoSave();
}, 5, 5, TimeUnit.SECONDS);
}
//自动存盘操作
void autoSave(){
if (!changed) {
return;
}
changed = false;
//执行存盘操作
//省略且实现
this.execSave();
}
//编辑操作
void edit(){
//省略编辑逻辑
......
changed = true;
}
}
Balking 模式的经典实现
boolean changed=false;
//自动存盘操作
void autoSave(){
synchronized(this){
if (!changed) {
return;
}
changed = false;
}
//执行存盘操作
//省略且实现
this.execSave();
}
//编辑操作
void edit(){
//省略编辑逻辑
......
change();
}
//改变状态
void change(){
synchronized(this){
changed = true;
}
}
用 volatile 实现 Balking 模式
使用 volatile 的前提是对原子性没有要求。
示例代码: volatile关键字只能保证可见性,无法保证原子性和互斥性。所以calc方法有可能被重复执行。
class Test{
volatile boolean inited = false;
int count = 0;
void init(){
if(inited){
return;
}
inited = true;
//计算count的值
count = calc();
}
}
Balking 模式实现单次初始化
class InitTest{
boolean inited = false;
synchronized void init(){
if(inited){
return;
}
//省略doInit的实现
doInit();
inited=true;
}
}
单例
class Singleton{
private static
Singleton singleton;
//构造方法私有化
private Singleton(){}
//获取实例(单例)
public synchronized static
Singleton getInstance(){
if(singleton == null){
singleton=new Singleton();
}
return singleton;
}
}
使用双重检查来优化性能
class Singleton{
private static volatile
Singleton singleton;
//构造方法私有化
private Singleton() {}
//获取实例(单例)
public static Singleton
getInstance() {
//第一次检查
if(singleton==null){
synchronize{Singleton.class){
//获取锁后二次检查
if(singleton==null){
singleton=new Singleton();
}
}
}
return singleton;
}
}
总结
Balking 模式和 Guarded Suspension 模式从实现上看似乎没有多大的关系,Balking 模式只需要用互斥锁就能解决,而 Guarded Suspension 模式则要用到管程这种高级的并发原语;但是从应用的角度来看,它们解决的都是“线程安全的 if”语义,不同之处在于,Guarded Suspension 模式会等待 if 条件为真,而 Balking 模式不会等待。
Balking 模式的经典实现是使用互斥锁,你可以使用 Java 语言内置 synchronized,也可以使用 SDK 提供 Lock;如果你对互斥锁的性能不满意,可以尝试采用 volatile 方案,不过使用 volatile 方案需要你更加谨慎。
当然你也可以尝试使用双重检查方案来优化性能,双重检查中的第一次检查,完全是出于对性能的考量:避免执行加锁操作,因为加锁操作很耗时。而加锁之后的二次检查,则是出于对安全性负责。
Thread-Per-Message模式:最简单实用的分工方法
Thread-Per-Message 模式,简言之就是为每个任务分配一个独立的线程
用 Thread 实现 Thread-Per-Message 模式
示例代码:
final ServerSocketChannel ssc =
ServerSocketChannel.open().bind(
new InetSocketAddress(8080));
//处理请求
try {
while (true) {
// 接收请求
SocketChannel sc = ssc.accept();
// 每个请求都创建一个线程
new Thread(()->{
try {
// 读Socket
ByteBuffer rb = ByteBuffer
.allocateDirect(1024);
sc.read(rb);
//模拟处理请求
Thread.sleep(2000);
// 写Socket
ByteBuffer wb =
(ByteBuffer)rb.flip();
sc.write(wb);
// 关闭Socket
sc.close();
}catch(Exception e){
throw new UncheckedIOException(e);
}
}).start();
}
} finally {
ssc.close();
}
如果你熟悉网络编程,相信你一定会提出一个很尖锐的问题:上面这个 echo 服务的实现方案是不具备可行性的。原因在于 Java 中的线程是一个重量级的对象,创建成本很高,一方面创建线程比较耗时,另一方面线程占用的内存也比较大。所以,为每个请求创建一个新的线程并不适合高并发场景。
于是,你开始质疑 Thread-Per-Message 模式,而且开始重新思索解决方案,这时候很可能你会想到 Java 提供的线程池。你的这个思路没有问题,但是引入线程池难免会增加复杂度。
Java 语言里,Java 线程是和操作系统线程一一对应的,这种做法本质上是将 Java 线程的调度权完全委托给操作系统,而操作系统在这方面非常成熟,所以这种做法的好处是稳定、可靠,但是也继承了操作系统线程的缺点:创建成本高。
用 Fiber 实现 Thread-Per-Message 模式
OpenJDK 有个 Loom 项目,就是要解决 Java 语言的轻量级线程问题,在这个项目中,轻量级线程被叫做 Fiber。
示例代码:
final ServerSocketChannel ssc =
ServerSocketChannel.open().bind(
new InetSocketAddress(8080));
//处理请求
try{
while (true) {
// 接收请求
final SocketChannel sc =
serverSocketChannel.accept();
Fiber.schedule(()->{
try {
// 读Socket
ByteBuffer rb = ByteBuffer
.allocateDirect(1024);
sc.read(rb);
//模拟处理请求
LockSupport.parkNanos(2000*1000000);
// 写Socket
ByteBuffer wb =
(ByteBuffer)rb.flip()
sc.write(wb);
// 关闭Socket
sc.close();
} catch(Exception e){
throw new UncheckedIOException(e);
}
});
}//while
}finally{
ssc.close();
}
总结:
并发编程领域的分工问题,指的是如何高效地拆解任务并分配给线程
Worker Thread模式:如何避免重复创建线程?
Worker Thread 模式及其实现
Worker Thread 模式可以类比现实世界里车间的工作模式:车间里的工人,有活儿了,大家一起干,没活儿了就聊聊天等着。你可以参考下面的示意图来理解,Worker Thread 模式中 Worker Thread 对应到现实世界里,其实指的就是车间里的工人。不过这里需要注意的是,车间里的工人数量往往是确定的。这个方案就是 Java 语言提供的线程池。
正确地创建线程池
- 创建有界的队列来接收任务
- 清晰地指明拒绝策略
- 在实际工作中给线程赋予一个业务相关的名字。
示例代码:
ExecutorService es = new ThreadPoolExecutor(
50, 500,
60L, TimeUnit.SECONDS,
//注意要创建有界队列
new LinkedBlockingQueue<Runnable>(2000),
//建议根据业务需求实现ThreadFactory
r->{
return new Thread(r, "echo-"+ r.hashCode());
},
//建议根据业务需求实现RejectedExecutionHandler
new ThreadPoolExecutor.CallerRunsPolicy());
避免线程死锁
使用线程池过程中,还要注意一种线程死锁的场景。如果提交到相同线程池的任务不是相互独立的,而是有依赖关系的,那么就有可能导致线程死锁。实际工作中,我就亲历过这种线程死锁的场景。具体现象是应用每运行一段时间偶尔就会处于无响应的状态,监控数据看上去一切都正常,但是实际上已经不能正常工作了。
示例代码: 如果你执行下面的这段代码,会发现它永远执行不到最后一行。执行过程中没有任何异常,但是应用已经停止响应了。
//L1、L2阶段共用的线程池
ExecutorService es = Executors.
newFixedThreadPool(2);
//L1阶段的闭锁
CountDownLatch l1=new CountDownLatch(2);
for (int i=0; i<2; i++){
System.out.println("L1");
//执行L1阶段任务
es.execute(()->{
//L2阶段的闭锁
CountDownLatch l2=new CountDownLatch(2);
//执行L2阶段子任务
for (int j=0; j<2; j++){
es.execute(()->{
System.out.println("L2");
l2.countDown();
});
}
//等待L2阶段任务执行完
l2.await();
l1.countDown();
});
}
//等着L1阶段任务执行完
l1.await();
System.out.println("end");
当应用出现类似问题时,首选的诊断方法是查看线程栈。下图是上面示例代码停止响应后的线程栈,你会发现线程池中的两个线程全部都阻塞在 l2.await(); 这行代码上了,也就是说,线程池里所有的线程都在等待 L2 阶段的任务执行完,那 L2 阶段的子任务什么时候能够执行完呢?永远都没那一天了,为什么呢?因为线程池里的线程都阻塞了,没有空闲的线程执行 L2 阶段的任务了。
原因找到了,那如何解决就简单了,最简单粗暴的办法就是将线程池的最大线程数调大,如果能够确定任务的数量不是非常多的话,这个办法也是可行的,否则这个办法就行不通了。其实这种问题通用的解决方案是为不同的任务创建不同的线程池。对于上面的这个应用,L1 阶段的任务和 L2 阶段的任务如果各自都有自己的线程池,就不会出现这种问题了。
最后再次强调一下:提交到相同线程池中的任务一定是相互独立的,否则就一定要慎重。
总结:
Worker Thread 模式和 Thread-Per-Message 模式的区别有哪些呢?
从现实世界的角度看,你委托代办人做事,往往是和代办人直接沟通的;对应到编程领域,其实现也是主线程直接创建了一个子线程,主子线程之间是可以直接通信的。而车间工人的工作方式则是完全围绕任务展开的,一个具体的任务被哪个工人执行,预先是无法知道的;对应到编程领域,则是主线程提交任务到线程池,但主线程并不关心任务被哪个线程执行。