🥉Easy
小扣在秋日市集选择了一家早餐摊位,一维整型数组 staple 中记录了每种主食的价格,一维整型数组 drinks 中记录了每种饮料的价格。小扣的计划选择一份主食和一款饮料,且花费不超过 x 元。请返回小扣共有多少种购买方案。
注意:答案需要以 1e9 + 7 (1000000007) 为底取模,如:计算初始结果为:1000000008,请返回 1
示例 1:
输入:staple = [10,20,5], drinks = [5,5,2], x = 15
输出:6
解释:小扣有 6 种购买方案,所选主食与所选饮料在数组中对应的下标分别是:
第 1 种方案:staple[0] + drinks[0] = 10 + 5 = 15;
第 2 种方案:staple[0] + drinks[1] = 10 + 5 = 15;
第 3 种方案:staple[0] + drinks[2] = 10 + 2 = 12;
第 4 种方案:staple[2] + drinks[0] = 5 + 5 = 10;
第 5 种方案:staple[2] + drinks[1] = 5 + 5 = 10;
第 6 种方案:staple[2] + drinks[2] = 5 + 2 = 7。
示例 2:
输入:staple = [2,1,1], drinks = [8,9,5,1], x = 9
输出:8
解释:小扣有 8 种购买方案,所选主食与所选饮料在数组中对应的下标分别是:
第 1 种方案:staple[0] + drinks[2] = 2 + 5 = 7;
第 2 种方案:staple[0] + drinks[3] = 2 + 1 = 3;
第 3 种方案:staple[1] + drinks[0] = 1 + 8 = 9;
第 4 种方案:staple[1] + drinks[2] = 1 + 5 = 6;
第 5 种方案:staple[1] + drinks[3] = 1 + 1 = 2;
第 6 种方案:staple[2] + drinks[0] = 1 + 8 = 9;
第 7 种方案:staple[2] + drinks[2] = 1 + 5 = 6;
第 8 种方案:staple[2] + drinks[3] = 1 + 1 = 2;
提示:
- 1 <= staple.length <= 10^5
- 1 <= drinks.length <= 10^5
- 1 <= staple[i],drinks[i] <= 10^5
- 1 <= x <= 2*10^5
题解
当时最开始想的就是直接双循环,但双循环肯定超时!后面就一直卡在这里了😢。但整体思路还是双循环,但是还是要做一些优化。首先肯定要对两个数组进行排序,筛选出符合条件的,然后使用双指针查找
Python
class Solution:
def breakfastNumber(self, staple: List[int], drinks: List[int],
x: int) -> int:
staple = [i for i in staple if i < x]
drinks = [i for i in drinks if i < x]
staple.sort()
drinks.sort()
sum = 0
j = len(drinks)
for i in staple:
if i >= x or j==0:
break
while i + drinks[j - 1] > x:
j -= 1
if j == 0:
break
sum += j
sum %= 1000000007
return sum
JavaScript
/**
* @param {number[]} staple
* @param {number[]} drinks
* @param {number} x
* @return {number}
*/
var breakfastNumber = function(staple, drinks, x) {
let staples=[]
let drink=[]
for (let i of staple){
if (i<x){
staples.push(i)
}
}
for (let j of drinks){
if(j<x){
drink.push(j)
}
}
staples.sort((a,b)=>{return a-b})
drink.sort((a,b)=>{return a-b})
let sum=0
let end=drink.length
for (let k of staples){
if (k>x || end===0){
break
}
while (k+drink[end-1]>x){
end--
if(end===0){
break
}
}
sum+=end
sum %= 1000000007
}
return sum
};