- 微调参数
- 参数格式
- 核心参数
- 控制学习参数
- force_col_wise
- force_row_wise
- histogram_pool_size
- max_depth
- min_data_in_leaf
- min_sum_hessian_in_leaf
- bagging_fraction
- pos_bagging_fraction
- neg_bagging_fraction
- bagging_freq
- bagging_seed
- feature_fraction
- feature_fraction_bynode
- feature_fraction_seed
- extra_trees
- extra_seed
- early_stopping_round
- first_metric_only
- max_delta_step
- lambda_l1
- lambda_l1
- min_gain_to_split
- drop_rate
- max_drop
- skip_drop
- xgboost_dart_mode
- uniform_drop
- drop_seed
- top_rate
- other_rate
- min_data_per_group
- max_cat_threshold
- cat_l2
- cat_smooth
- max_cat_to_onehot
- top_k
- monotone_constraints
- monotone_constraints_method
- monotone_penalty
- feature_contri
- forcedsplits_filename
- refit_decay_rate
- cegb_tradeoff
- cegb_penalty_split
- cegb_penalty_feature_lazy
- cegb_penalty_feature_coupled
- path_smooth
- interaction_constraints
- verbosity
- input_model
- output_model
- saved_feature_importance_type
- snapshot_freq
- I/O参数
- Objective参数
- Metric参数
- Network参数
- GPU参数
- 其他参数
微调参数
有一些参数是已经默认好的,所以我们只需要更改一些其他的参数,使得整个训练过程能够达到良好的结果即可。
我们之前说过,传统的树是通过增加树的宽度来不断进行的,并且这个过程中:树的宽度 = 2。所以,但是LightGBM不满足这个式子,所以这个时候我们要调整的参数有3个。叶子的个数(数的宽度),最大深度,叶子中的数据最小值。
num_leaves:叶子的个数。我们为了防止数据的过拟合,通常选取:叶子个数 < 2。例如,我们设定树的深度为7的话,叶子个数为127会造成过拟合,这个时候设定为70/80会得到更好的准确率。min_data_in_leaf:叶子的数据的最小值。这个参数的选取主要却决于训练样本的个数和num_leaves。如果这个值设定的比较大的话会避免树的深度过大,但是会造成欠拟合。通常情况下,对于大数据把它设定为 上百位或上千位就比较合适了。-
更快的训练速度
通过设定
bagging_fraction和bagging_freq来使用bagging算法- 通过设定
feature_fraction来使用特征的子样本 - 设定更小的
max_bin - 使用
save_binary来加速数据的加载 使用并行学习(parallel learning),参考Parallel Learning Guide
更好的准确率
更大的
max_bin(训练速度会减慢)- 使用更小的
learning_rate和更大的num_iterations - 使用更大的
num_leaves(可能会造成过拟合) - 使用更大的训练数据
-
避免过拟合
使用更小的
max_bin- 使用更小的
num_leaves - 使用
min_data_in_leaf和min_sum_hessian_in_leaf - 通过设定
baggging_fraction和bagging_freq使用bagging - 通过设定
feature_fraction来使用特征的子样本 - 使用更大的训练数据
- 使用
lambda_l1,lambda_l2和min_gain_to_split来正则化 - 使用
max_depth来限定树的深度 - 使用
extra_trees -
参数格式
参数格式为
key1=value1 key2=value2...,参数可以在配置文件(config file)和命令行(command line)设置。在命令行设置的时候,在=前后不要有空格。通过配置文件,我们可以在命令行的参数设置中只输入一个参数即可。
如果命令行和配置文件中都有参数的话,LightGBM会使用命令行的参数。核心参数
config
config,- default =
"", type = string, aliases:config_file
- default =
- path of config file
Note: can be used only in CLI version
task
task- default =
train, - type = enum, options:
train,predict,convert_model,refit, aliases:task_type
- default =
train, for training, aliases:trainingpredict, for prediction, aliases:prediction,testconvert_model, for converting model file into if-else format, see more information in Convert Parametersrefit, for refitting existing models with new data, aliases:refit_tree
Note: can be used only in CLI version; for language-specific packages you can use the correspondent functions
objective
objective- default =
regression, type = enum,
huber,fair,poisson,quantile,mape,gamma,tweedie,binary,multiclass,multiclassova,cross_entropy,cross_entropy_lambda,lambdarank,rank_xendcg, aliases:objective_type,app,application1. regression application
regression, L2 loss, aliases:regression_l2,l2,mean_squared_error,mse,l2_root,root_mean_squared_error,rmseregression_l1, L1 loss, aliases:l1,mean_absolute_error,maehuber, Huber lossfair, Fair losspoisson, Poisson regressionquantile, Quantile regressionmape, MAPE loss, aliases:mean_absolute_percentage_errorgamma, Gamma regression with log-link. It might be useful, e.g., for modeling insurance claims severity, or for any target that might be gamma-distributedtweedie, Tweedie regression with log-link. It might be useful, e.g., for modeling total loss in insurance, or for any target that might be tweedie-distributed2. binary classification application
binary, binary log loss classification (or logistic regression)requires labels in {0, 1}; see
cross-entropyapplication for general probability labels in [0, 1]3. multi-class classification application
multiclass, softmax objective function, aliases:softmaxmulticlassova, One-vs-All binary objective function, aliases:multiclass_ova,ova,ovrnum_classshould be set as well4. cross-entropy application
cross_entropy, objective function for cross-entropy (with optional linear weights), aliases:xentropycross_entropy_lambda, alternative parameterization of cross-entropy, aliases:xentlambdalabel is anything in interval [0, 1]
5. ranking application
lambdarank, lambdarank objective. label_gain can be used to set the gain (weight) ofintlabel and all values inlabelmust be smaller than number of elements inlabel_gainrank_xendcg, XE_NDCG_MART ranking objective function, aliases:xendcg,xe_ndcg,xe_ndcg_mart,xendcg_martrank_xendcgis faster than and achieves the similar performance aslambdaranklabel should be
inttype, and larger number represents the higher relevance (e.g. 0:bad, 1:fair, 2:good, 3:perfect)boosting
boostingdefault =
gbdt,- type = enum, options:
gbdt,rf,dart,goss, aliases:boosting_type,boost
- default =
gbdt, traditional Gradient Boosting Decision Tree, aliases:gbrtrf, Random Forest, aliases:random_forestdart, Dropouts meet Multiple Additive Regression Treesgoss, Gradient-based One-Side Sampling
Note: internally, LightGBM uses
gbdtmode for the first1 / learning_rateiterationsdata
data- default =
"", - type = string, aliases:
train,train_data,train_data_file,data_filename
- default =
- path of training data, LightGBM will train from this data
Note: can be used only in CLI version
valid
valid- default =
"", - type = string, aliases:
test,valid_data,valid_data_file,test_data,test_data_file,valid_filenames
- default =
- path(s) of validation/test data, LightGBM will output metrics for these data
- support multiple validation data, separated by
,
Note: can be used only in CLI version
num_iterations
num_iterations- default =
100, - type = int, aliases:
num_iteration,n_iter,num_tree,num_trees,num_round,num_rounds,num_boost_round,n_estimators, constraints:num_iterations >= 0
- default =
- number of boosting iterations
Note: internally, LightGBM constructs
num_class * num_iterationstrees for multi-class classification problemslearning_rate
learning_rate- default =
0.1, - type = double, aliases:
shrinkage_rate,eta, constraints:learning_rate > 0.0
- default =
- shrinkage rate
in
dart, it also affects on normalization weights of dropped treesnum_leaves
num_leaves- default =
31, - type = int, aliases:
num_leaf,max_leaves,max_leaf, constraints:1 < num_leaves <= 131072
- default =
max number of leaves in one tree
tree_learner
tree_learner- default =
serial, - type = enum, options:
serial,feature,data,voting, aliases:tree,tree_type,tree_learner_type
- default =
serial, single machine tree learnerfeature, feature parallel tree learner, aliases:feature_paralleldata, data parallel tree learner, aliases:data_parallelvoting, voting parallel tree learner, aliases:voting_parallel
refer to Parallel Learning Guide to get more details
num_threads
num_threads- default =
0, - type = int, aliases:
num_thread,nthread,nthreads,n_jobs
- default =
- number of threads for LightGBM
0means default number of threads in OpenMP- for the best speed, set this to the number of real CPU cores, not the number of threads (most CPUs use hyper-threading to generate 2 threads per CPU core)
- do not set it too large if your dataset is small (for instance, do not use 64 threads for a dataset with 10,000 rows)
- be aware a task manager or any similar CPU monitoring tool might report that cores not being fully utilized. This is normal
- for parallel learning, do not use all CPU cores because this will cause poor performance for the network communication
Note: please don’t change this during training, especially when running multiple jobs simultaneously by external packages, otherwise it may cause undesirable errors
device_type
device_type- default =
cpu, - type = enum, options:
cpu,gpu, aliases:device
- default =
- device for the tree learning, you can use GPU to achieve the faster learning
- Note: it is recommended to use the smaller
max_bin(e.g. 63) to get the better speed up - Note: for the faster speed, GPU uses 32-bit float point to sum up by default, so this may affect the accuracy for some tasks. You can set
gpu_use_dp=trueto enable 64-bit float point, but it will slow down the training Note: refer to Installation Guide to build LightGBM with GPU support
seed
seed- default =
None, - type = int, aliases:
random_seed,random_state
- default =
- this seed is used to generate other seeds, e.g.
data_random_seed,feature_fraction_seed, etc. - by default, this seed is unused in favor of default values of other seeds
this seed has lower priority in comparison with other seeds, which means that it will be overridden, if you set other seeds explicitly
deterministic
deterministic- default =
false, - type = bool
- default =
- used only with
cpudevice type - setting this to
trueshould ensure the stable results when using the same data and the same parameters (and differentnum_threads) - when you use the different seeds, different LightGBM versions, the binaries compiled by different compilers, or in different systems, the results are expected to be different
- you can raise issues in LightGBM GitHub repo when you meet the unstable results
Note: setting this to
truemay slow down the training控制学习参数
force_col_wise
force_col_wise- default =
false, - type = bool
- default =
- used only with
cpudevice type - set this to
trueto force col-wise histogram building - enabling this is recommended when:
- the number of columns is large, or the total number of bins is large
num_threadsis large, e.g.> 20- you want to reduce memory cost
- Note: when both
force_col_wiseandforce_row_wisearefalse, LightGBM will firstly try them both, and then use the faster one. To remove the overhead of testing set the faster one totruemanually Note: this parameter cannot be used at the same time with
force_row_wise, choose only one of themforce_row_wise
force_row_wise- default =
false, - type = bool
- default =
- used only with
cpudevice type - set this to
trueto force row-wise histogram building - enabling this is recommended when:
- the number of data points is large, and the total number of bins is relatively small
num_threadsis relatively small, e.g.<= 16- you want to use small
bagging_fractionorgossboosting to speed up
- Note: setting this to
truewill double the memory cost for Dataset object. If you have not enough memory, you can try settingforce_col_wise=true - Note: when both
force_col_wiseandforce_row_wisearefalse, LightGBM will firstly try them both, and then use the faster one. To remove the overhead of testing set the faster one totruemanually Note: this parameter cannot be used at the same time with
force_col_wise, choose only one of themhistogram_pool_size
histogram_pool_size- default =
-1.0, - type = double, aliases:
hist_pool_size
- default =
- max cache size in MB for historical histogram
-
max_depth
max_depth- default =
-1, - type = int
- default =
- limit the max depth for tree model. This is used to deal with over-fitting when
#datais small. Tree still grows leaf-wise -
min_data_in_leaf
min_data_in_leaf- default =
20, - type = int, aliases:
min_data_per_leaf,min_data,min_child_samples, constraints:min_data_in_leaf >= 0
- default =
minimal number of data in one leaf. Can be used to deal with over-fitting
min_sum_hessian_in_leaf
min_sum_hessian_in_leaf- default =
1e-3, - type = double, aliases:
min_sum_hessian_per_leaf,min_sum_hessian,min_hessian,min_child_weight, constraints:min_sum_hessian_in_leaf >= 0.0
- default =
minimal sum hessian in one leaf. Like
min_data_in_leaf, it can be used to deal with over-fittingbagging_fraction
bagging_fraction- default =
1.0, - type = double, aliases:
sub_row,subsample,bagging, constraints:0.0 < bagging_fraction <= 1.0
- default =
- like
feature_fraction, but this will randomly select part of data without resampling - can be used to speed up training
- can be used to deal with over-fitting
Note: to enable bagging,
bagging_freqshould be set to a non zero value as wellpos_bagging_fraction
pos_bagging_fraction- default =
1.0, - type = double, aliases:
pos_sub_row,pos_subsample,pos_bagging, constraints:0.0 < pos_bagging_fraction <= 1.0
- default =
- used only in
binaryapplication - used for imbalanced binary classification problem, will randomly sample
#pos_samples * pos_bagging_fractionpositive samples in bagging - should be used together with
neg_bagging_fraction - set this to
1.0to disable
- Note: to enable this, you need to set
bagging_freqandneg_bagging_fractionas well - Note: if both
pos_bagging_fractionandneg_bagging_fractionare set to1.0, balanced bagging is disabled Note: if balanced bagging is enabled,
bagging_fractionwill be ignoredneg_bagging_fraction
neg_bagging_fraction- default =
1.0, - type = double, aliases:
neg_sub_row,neg_subsample,neg_bagging, constraints:0.0 < neg_bagging_fraction <= 1.0
- default =
- used only in
binaryapplication - used for imbalanced binary classification problem, will randomly sample
#neg_samples * neg_bagging_fractionnegative samples in bagging - should be used together with
pos_bagging_fraction - set this to
1.0to disable
- Note: to enable this, you need to set
bagging_freqandpos_bagging_fractionas well - Note: if both
pos_bagging_fractionandneg_bagging_fractionare set to1.0, balanced bagging is disabled Note: if balanced bagging is enabled,
bagging_fractionwill be ignoredbagging_freq
bagging_freq- default =
0, - type = int, aliases:
subsample_freq
- default =
- frequency for bagging
0means disable bagging;kmeans perform bagging at everykiteration
Note: to enable bagging,
bagging_fractionshould be set to value smaller than1.0as wellbagging_seed
bagging_seed- default =
3, - type = int, aliases:
bagging_fraction_seed
- default =
-
feature_fraction
feature_fraction- default =
1.0, - type = double, aliases:
sub_feature,colsample_bytree, constraints:0.0 < feature_fraction <= 1.0
- default =
- LightGBM will randomly select part of features on each iteration (tree) if
feature_fractionsmaller than1.0. For example, if you set it to0.8, LightGBM will select 80% of features before training each tree - can be used to speed up training
can be used to deal with over-fitting
feature_fraction_bynode
feature_fraction_bynode- default =
1.0, - type = double, aliases:
sub_feature_bynode,colsample_bynode, constraints:0.0 < feature_fraction_bynode <= 1.0
- default =
- LightGBM will randomly select part of features on each tree node if
feature_fraction_bynodesmaller than1.0. For example, if you set it to0.8, LightGBM will select 80% of features at each tree node - can be used to deal with over-fitting
- Note: unlike
feature_fraction, this cannot speed up training Note: if both
feature_fractionandfeature_fraction_bynodeare smaller than1.0, the final fraction of each node isfeature_fraction * feature_fraction_bynodefeature_fraction_seed
feature_fraction_seed- default =
2, - type = int
- default =
random seed for
feature_fractionextra_trees
extra_trees- default =
false, - type = bool
- default =
- use extremely randomized trees
- if set to
true, when evaluating node splits LightGBM will check only one randomly-chosen threshold for each feature can be used to deal with over-fitting
extra_seed
extra_seed- default =
6, - type = int
- default =
random seed for selecting thresholds when
extra_treesis trueearly_stopping_round
early_stopping_round- default =
0, - type = int, aliases:
early_stopping_rounds,early_stopping,n_iter_no_change
- default =
- will stop training if one metric of one validation data doesn’t improve in last
early_stopping_roundrounds -
first_metric_only
first_metric_only- default =
false, - type = bool
- default =
set this to
true, if you want to use only the first metric for early stoppingmax_delta_step
max_delta_step- default =
0.0, - type = double, aliases:
max_tree_output,max_leaf_output
- default =
- used to limit the max output of tree leaves
<= 0means no constraintthe final max output of leaves is
learning_rate * max_delta_steplambda_l1
lambda_l1- default =
0.0, - type = double, aliases:
reg_alpha, constraints:lambda_l1 >= 0.0
- default =
-
lambda_l1
lambda_l2- default =
0.0, - type = double, aliases:
reg_lambda,lambda, constraints:lambda_l2 >= 0.0
- default =
- L2 regularization
min_gain_to_split
min_gain_to_split- default =
0.0, - type = double, aliases:
min_split_gain, constraints:min_gain_to_split >= 0.0
- default =
the minimal gain to perform split
drop_rate
drop_rate- default =
0.1, - type = double, aliases:
rate_drop, constraints:0.0 <= drop_rate <= 1.0
- default =
- used only in
dart dropout rate: a fraction of previous trees to drop during the dropout
max_drop
max_drop- default =
50, - type = int
- default =
- used only in
dart - max number of dropped trees during one boosting iteration
-
skip_drop
skip_drop- default =
0.5, - type = double, constraints:
0.0 <= skip_drop <= 1.0
- default =
- used only in
dart probability of skipping the dropout procedure during a boosting iteration
xgboost_dart_mode
xgboost_dart_mode- default =
false, - type = bool
- default =
- used only in
dart set this to
true, if you want to use xgboost dart modeuniform_drop
uniform_drop- default =
false, - type = bool
- default =
- used only in
dart set this to
true, if you want to use uniform dropdrop_seed
drop_seed- default =
4, - type = int
- default =
- used only in
dart random seed to choose dropping models
top_rate
top_rate- default =
0.2, - type = double, constraints:
0.0 <= top_rate <= 1.0
- default =
- used only in
goss the retain ratio of large gradient data
other_rate
other_rate- default =
0.1, - type = double, constraints:
0.0 <= other_rate <= 1.0
- default =
- used only in
goss the retain ratio of small gradient data
min_data_per_group
min_data_per_group- default =
100, - type = int, constraints:
min_data_per_group > 0
- default =
minimal number of data per categorical group
max_cat_threshold
max_cat_threshold- default =
32, - type = int, constraints:
max_cat_threshold > 0
- default =
used for the categorical features
cat_l2
cat_l2- default =
10.0, - type = double, constraints:
cat_l2 >= 0.0
- default =
- used for the categorical features
L2 regularization in categorical split
cat_smooth
cat_smooth- default =
10.0, - type = double, constraints:
cat_smooth >= 0.0
- default =
- used for the categorical features
this can reduce the effect of noises in categorical features, especially for categories with few data
max_cat_to_onehot
max_cat_to_onehot- default =
4, - type = int, constraints:
max_cat_to_onehot > 0
- default =
when number of categories of one feature smaller than or equal to
max_cat_to_onehot, one-vs-other split algorithm will be usedtop_k
top_k- default =
20, - type = int, aliases:
topk, constraints:top_k > 0
- default =
- used only in
votingtree learner, refer to Voting parallel set this to larger value for more accurate result, but it will slow down the training speed
monotone_constraints
monotone_constraints- default =
None, - type = multi-int, aliases:
mc,monotone_constraint
- default =
- used for constraints of monotonic features
1means increasing,-1means decreasing,0means non-constraintyou need to specify all features in order. For example,
mc=-1,0,1means decreasing for 1st feature, non-constraint for 2nd feature and increasing for the 3rd featuremonotone_constraints_method
monotone_constraints_method- default =
basic, - type = enum, options:
basic,intermediate,advanced, aliases:monotone_constraining_method,mc_method
- default =
- used only if
monotone_constraintsis set monotone constraints method
basic, the most basic monotone constraints method. It does not slow the library at all, but over-constrains the predictionsintermediate, a more advanced method, which may slow the library very slightly. However, this method is much less constraining than the basic method and should significantly improve the resultsadvanced, an even more advanced method, which may slow the library. However, this method is even less constraining than the intermediate method and should again significantly improve the resultsmonotone_penalty
monotone_penaltydefault =
0.0,- type = double, aliases:
monotone_splits_penalty,ms_penalty,mc_penalty, constraints:monotone_penalty >= 0.0
- used only if
monotone_constraintsis set - monotone penalty: a penalization parameter X forbids any monotone splits on the first X (rounded down) level(s) of the tree. The penalty applied to monotone splits on a given depth is a continuous, increasing function the penalization parameter
if
0.0(the default), no penalization is appliedfeature_contri
feature_contri- default =
None, - type = multi-double, aliases:
feature_contrib,fc,fp,feature_penalty
- default =
- used to control feature’s split gain, will use
gain[i] = max(0, feature_contri[i]) * gain[i]to replace the split gain of i-th feature you need to specify all features in order
forcedsplits_filename
forcedsplits_filename- default =
"", - type = string, aliases:
fs,forced_splits_filename,forced_splits_file,forced_splits
- default =
- path to a
.jsonfile that specifies splits to force at the top of every decision tree before best-first learning commences .jsonfile can be arbitrarily nested, and each split containsfeature,thresholdfields, as well asleftandrightfields representing subsplits- categorical splits are forced in a one-hot fashion, with
leftrepresenting the split containing the feature value andrightrepresenting other values
- Note: the forced split logic will be ignored, if the split makes gain worse
see this file as an example
refit_decay_rate
refit_decay_rate- default =
0.9, - type = double, constraints:
0.0 <= refit_decay_rate <= 1.0
- default =
- decay rate of
refittask, will useleaf_output = refit_decay_rate * old_leaf_output + (1.0 - refit_decay_rate) * new_leaf_outputto refit trees used only in
refittask in CLI version or as argument inrefitfunction in language-specific packagecegb_tradeoff
cegb_tradeoff- default =
1.0, - type = double, constraints:
cegb_tradeoff >= 0.0
- default =
cost-effective gradient boosting multiplier for all penalties
cegb_penalty_split
cegb_penalty_split- default =
0.0, - type = double, constraints:
cegb_penalty_split >= 0.0
- default =
cost-effective gradient-boosting penalty for splitting a node
cegb_penalty_feature_lazy
cegb_penalty_feature_lazy- default =
0,0,...,0, - type = multi-double
- default =
- cost-effective gradient boosting penalty for using a feature
-
cegb_penalty_feature_coupled
cegb_penalty_feature_coupled- default =
0,0,...,0, - type = multi-double
- default =
- cost-effective gradient boosting penalty for using a feature
-
path_smooth
path_smooth- default =
0, - type = double, constraints:
path_smooth >= 0.0
- default =
- controls smoothing applied to tree nodes
- helps prevent overfitting on leaves with few samples
- if set to zero, no smoothing is applied
- if
path_smooth > 0thenmin_data_in_leafmust be at least2 larger values give stronger regularisation
- the weight of each node is
(n / path_smooth) * w + w_p / (n / path_smooth + 1), wherenis the number of samples in the node,wis the optimal node weight to minimise the loss (approximately-sum_gradients / sum_hessians), andw_pis the weight of the parent node note that the parent output
w_pitself has smoothing applied, unless it is the root node, so that the smoothing effect accumulates with the tree depthinteraction_constraints
interaction_constraintsdefault =
"",- type = string
- the weight of each node is
- controls which features can appear in the same branch
- by default interaction constraints are disabled, to enable them you can specify
- for CLI, lists separated by commas, e.g.
[0,1,2],[2,3] - for Python-package, list of lists, e.g.
[[0, 1, 2], [2, 3]] - for R-package, list of character or numeric vectors, e.g.
list(c("var1", "var2", "var3"), c("var3", "var4"))orlist(c(1L, 2L, 3L), c(3L, 4L)). Numeric vectors should use 1-based indexing, where1Lis the first feature,2Lis the second feature, etc any two features can only appear in the same branch only if there exists a constraint containing both features
verbosity
verbosity- default =
1, - type = int, aliases:
verbose
- default =
- controls the level of LightGBM’s verbosity
< 0: Fatal,= 0: Error (Warning),= 1: Info,> 1: Debuginput_model
input_model- default =
"", - type = string, aliases:
model_input,model_in
- default =
- filename of input model
- for
predictiontask, this model will be applied to prediction data - for
traintask, training will be continued from this model
Note: can be used only in CLI version
output_model
output_model- default =
LightGBM_model.txt, - type = string, aliases:
model_output,model_out
- default =
- filename of output model in training
Note: can be used only in CLI version
saved_feature_importance_type
saved_feature_importance_type- default =
0, - type = int
- default =
- the feature importance type in the saved model file
0: count-based feature importance (numbers of splits are counted);1: gain-based feature importance (values of gain are counted)
Note: can be used only in CLI version
snapshot_freq
snapshot_freq- default =
-1, - type = int, aliases:
save_period
- default =
- frequency of saving model file snapshot
- set this to positive value to enable this function. For example, the model file will be snapshotted at each iteration if
snapshot_freq=1
Note: can be used only in CLI version
I/O参数
Dataset参数
max_bin
max_bin- default =
255, - type = int, constraints:
max_bin > 1
- default =
- max number of bins that feature values will be bucketed in
- small number of bins may reduce training accuracy but may increase general power (deal with over-fitting)
LightGBM will auto compress memory according to
max_bin. For example, LightGBM will useuint8_tfor feature value ifmax_bin=255max_bin_by_feature
max_bin_by_feature- default =
None, - type = multi-int
- default =
- max number of bins for each feature
if not specified, will use
max_binfor all featuresmin_data_in_bin
min_data_in_bin- default =
3, - type = int, constraints:
min_data_in_bin > 0
- default =
- minimal number of data inside one bin
use this to avoid one-data-one-bin (potential over-fitting)
bin_construct_sample_cnt
bin_construct_sample_cnt- default =
200000, - type = int, aliases:
subsample_for_bin, constraints:bin_construct_sample_cnt > 0
- default =
- number of data that sampled to construct feature discrete bins
- setting this to larger value will give better training result, but may increase data loading time
- set this to larger value if data is very sparse
Note: don’t set this to small values, otherwise, you may encounter unexpected errors and poor accuracy
data_random_seed
data_random_seed- default =
1, - type = int, aliases:
data_seed
- default =
random seed for sampling data to construct histogram bins
is_enable_sparse
is_enable_sparse- default =
true, - type = bool, aliases:
is_sparse,enable_sparse,sparse
- default =
used to enable/disable sparse optimization
enable_bundle
enable_bundle- default =
true, - type = bool, aliases:
is_enable_bundle,bundle
- default =
- set this to
falseto disable Exclusive Feature Bundling (EFB), which is described in LightGBM: A Highly Efficient Gradient Boosting Decision Tree
Note: disabling this may cause the slow training speed for sparse datasets
use_missing
use_missing- default =
true, - type = bool
- default =
set this to
falseto disable the special handle of missing valuezero_as_missing
zero_as_missing- default =
false, - type = bool
- default =
- set this to
trueto treat all zero as missing values (including the unshown values in LibSVM / sparse matrices) set this to
falseto usenafor representing missing valuesfeature_pre_filter
feature_pre_filter- default =
true, - type = bool
- default =
- set this to
trueto pre-filter the unsplittable features bymin_data_in_leaf - as dataset object is initialized only once and cannot be changed after that, you may need to set this to
falsewhen searching parameters withmin_data_in_leaf, otherwise features are filtered bymin_data_in_leaffirstly if you don’t reconstruct dataset object
Note: setting this to
falsemay slow down the trainingpre_partition
pre_partition- default =
false, - type = bool, aliases:
is_pre_partition
- default =
- used for parallel learning (excluding the
feature_parallelmode) trueif training data are pre-partitioned, and different machines use different partitionstwo_round
two_round- default =
false, - type = bool, aliases:
two_round_loading,use_two_round_loading
- default =
- set this to
trueif data file is too big to fit in memory - by default, LightGBM will map data file to memory and load features from memory. This will provide faster data loading speed, but may cause run out of memory error when the data file is very big
Note: works only in case of loading data directly from file
header
header- default =
false, - type = bool, aliases:
has_header
- default =
- set this to
trueif input data has header
Note: works only in case of loading data directly from file
label_column
label_column- default =
"", - type = int or string, aliases:
label
- default =
- used to specify the label column
- use number for index, e.g.
label=0means column_0 is the label - add a prefix
name:for column name, e.g.label=name:is_click
Note: works only in case of loading data directly from file
weight_column
weight_column- default =
"", - type = int or string, aliases:
weight
- default =
- used to specify the weight column
- use number for index, e.g.
weight=0means column_0 is the weight - add a prefix
name:for column name, e.g.weight=name:weight
- Note: works only in case of loading data directly from file
Note: index starts from
0and it doesn’t count the label column when passing type isint, e.g. when label is column_0, and weight is column_1, the correct parameter isweight=0group_column
group_column- default =
"", - type = int or string, aliases:
group,group_id,query_column,query,query_id
- default =
- used to specify the query/group id column
- use number for index, e.g.
query=0means column_0 is the query id - add a prefix
name:for column name, e.g.query=name:query_id
- Note: works only in case of loading data directly from file
- Note: data should be grouped by query_id
Note: index starts from
0and it doesn’t count the label column when passing type isint, e.g. when label is column_0 and query_id is column_1, the correct parameter isquery=0ignore_column
ignore_column- default =
"", - type = multi-int or string, aliases:
ignore_feature,blacklist
- default =
- used to specify some ignoring columns in training
- use number for index, e.g.
ignore_column=0,1,2means column_0, column_1 and column_2 will be ignored - add a prefix
name:for column name, e.g.ignore_column=name:c1,c2,c3means c1, c2 and c3 will be ignored
- Note: works only in case of loading data directly from file
- Note: index starts from
0and it doesn’t count the label column when passing type isint Note: despite the fact that specified columns will be completely ignored during the training, they still should have a valid format allowing LightGBM to load file successfully
categorical_feature
categorical_feature- default =
"", - type = multi-int or string, aliases:
cat_feature,categorical_column,cat_column
- default =
- used to specify categorical features
- use number for index, e.g.
categorical_feature=0,1,2means column_0, column_1 and column_2 are categorical features - add a prefix
name:for column name, e.g.categorical_feature=name:c1,c2,c3means c1, c2 and c3 are categorical features
- Note: only supports categorical with
inttype (not applicable for data represented as pandas DataFrame in Python-package) - Note: index starts from
0and it doesn’t count the label column when passing type isint - Note: all values should be less than
Int32.MaxValue(2147483647) - Note: using large values could be memory consuming. Tree decision rule works best when categorical features are presented by consecutive integers starting from zero
- Note: all negative values will be treated as missing values
Note: the output cannot be monotonically constrained with respect to a categorical feature
forcedbins_filename
forcedbins_filename- default =
"", - type = string
- default =
- path to a
.jsonfile that specifies bin upper bounds for some or all features .jsonfile should contain an array of objects, each containing the wordfeature(integer feature index) andbin_upper_bound(array of thresholds for binning)see this file as an example
save_binary
save_binary- default =
false, - type = bool, aliases:
is_save_binary,is_save_binary_file
- default =
- if
true, LightGBM will save the dataset (including validation data) to a binary file. This speed ups the data loading for the next time
- Note:
init_scoreis not saved in binary file Note: can be used only in CLI version; for language-specific packages you can use the correspondent function
Predict参数
start_iteration_predict
start_iteration_predict- default =
0, - type = int
- default =
- used only in
predictiontask - used to specify from which iteration to start the prediction
<= 0means from the first iterationnum_iteration_predict
num_iteration_predict- default =
-1, - type = int
- default =
- used only in
predictiontask - used to specify how many trained iterations will be used in prediction
-
predict_raw_score
predict_raw_score- default =
false, - type = bool, aliases:
is_predict_raw_score,predict_rawscore,raw_score
- default =
- used only in
predictiontask - set this to
trueto predict only the raw scores set this to
falseto predict transformed scorespreditct_leaf_index
predict_leaf_index- default =
false, - type = bool, aliases:
is_predict_leaf_index,leaf_index
- default =
- used only in
predictiontask set this to
trueto predict with leaf index of all treespredict_contrib
predict_contrib- default =
false, - type = bool, aliases:
is_predict_contrib,contrib
- default =
- used only in
predictiontask - set this to
trueto estimate SHAP values, which represent how each feature contributes to each prediction - produces
#features + 1values where the last value is the expected value of the model output over the training data
- Note: if you want to get more explanation for your model’s predictions using SHAP values like SHAP interaction values, you can install shap package
Note: unlike the shap package, with
predict_contribwe return a matrix with an extra column, where the last column is the expected valuepredict_disable_shape_check
predict_disable_shape_check- default =
false, - type = bool
- default =
- used only in
predictiontask - control whether or not LightGBM raises an error when you try to predict on data with a different number of features than the training data
- if
false(the default), a fatal error will be raised if the number of features in the dataset you predict on differs from the number seen during training - if
true, LightGBM will attempt to predict on whatever data you provide. This is dangerous because you might get incorrect predictions, but you could use it in situations where it is difficult or expensive to generate some features and you are very confident that they were never chosen for splits in the model
Note: be very careful setting this parameter to
truepred_early_stop
pred_early_stop- default =
false, - type = bool
- default =
- used only in
predictiontask if
true, will use early-stopping to speed up the prediction. May affect the accuracypred_early_stop_freq
pred_early_stop_freq- default =
10, - type = int
- default =
- used only in
predictiontask the frequency of checking early-stopping prediction
pred_early_stop_margin
pred_early_stop_margin- default =
10.0, - type = double
- default =
- used only in
predictiontask the threshold of margin in early-stopping prediction
output_result
output_result- default =
LightGBM_predict_result.txt, - type = string, aliases:
predict_result,prediction_result,predict_name,prediction_name,pred_name,name_pred
- default =
- used only in
predictiontask - filename of prediction result
Note: can be used only in CLI version
Convert参数
convert_model_language
convert_model_language- default =
"", - type = string
- default =
- used only in
convert_modeltask - only
cppis supported yet; for conversion model to other languages consider using m2cgen utility - if
convert_model_languageis set andtask=train, the model will be also converted
Note: can be used only in CLI version
convert_model
convert_model- default =
gbdt_prediction.cpp, - type = string, aliases:
convert_model_file
- default =
- used only in
convert_modeltask - output filename of converted model
Note: can be used only in CLI version
Objective参数
objective_seed
objective_seed- default =
5, - type = int
- default =
- used only in
rank_xendcgobjective random seed for objectives, if random process is needed
num_class
num_class- default =
1, - type = int, aliases:
num_classes, constraints:num_class > 0
- default =
used only in
multi-classclassification applicationis_unbalance
is_unbalance- default =
false, - type = bool, aliases:
unbalance,unbalanced_sets
- default =
- used only in
binaryandmulticlassovaapplications - set this to
trueif training data are unbalanced
- Note: while enabling this should increase the overall performance metric of your model, it will also result in poor estimates of the individual class probabilities
Note: this parameter cannot be used at the same time with
scale_pos_weight, choose only one of themscale_pos_weight
scale_pos_weight- default =
1.0, - type = double, constraints:
scale_pos_weight > 0.0
- default =
- used only in
binaryandmulticlassovaapplications - weight of labels with positive class
- Note: while enabling this should increase the overall performance metric of your model, it will also result in poor estimates of the individual class probabilities
Note: this parameter cannot be used at the same time with
is_unbalance, choose only one of themsigmoid
sigmoid- default =
1.0, - type = double, constraints:
sigmoid > 0.0
- default =
- used only in
binaryandmulticlassovaclassification and inlambdarankapplications parameter for the sigmoid function
boost_from_average
boost_from_average- default =
true, - type = bool
- default =
- used only in
regression,binary,multiclassovaandcross-entropyapplications adjusts initial score to the mean of labels for faster convergence
reg_sqrt
reg_sqrt- default =
false, - type = bool
- default =
- used only in
regressionapplication - used to fit
sqrt(label)instead of original values and prediction result will be also automatically converted toprediction^2 - might be useful in case of large-range labels
alpha
alpha- default =
0.9, - type = double, constraints:
alpha > 0.0
- default =
- used only in
huberandquantileregressionapplications parameter for Huber loss and Quantile regression
fair_c
fair_c- default =
1.0, - type = double, constraints:
fair_c > 0.0
- default =
- used only in
fairregressionapplication parameter for Fair loss
poisson_max_delta_step
poisson_max_delta_step- default =
0.7, - type = double, constraints:
poisson_max_delta_step > 0.0
- default =
- used only in
poissonregressionapplication parameter for Poisson regression to safeguard optimization
tweedie_variance_power
tweedie_variance_power- default =
1.5, - type = double, constraints:
1.0 <= tweedie_variance_power < 2.0
- default =
- used only in
tweedieregressionapplication - used to control the variance of the tweedie distribution
- set this closer to
2to shift towards a Gamma distribution set this closer to
1to shift towards a Poisson distributionlambdarank_truncation_level
lambdarank_truncation_level- default =
30, - type = int, constraints:
lambdarank_truncation_level > 0
- default =
- used only in
lambdarankapplication - controls the number of top-results to focus on during training, refer to “truncation level” in the Sec. 3 of LambdaMART paper
this parameter is closely related to the desirable cutoff
kin the metric NDCG@k that we aim at optimizing the ranker for. The optimal setting for this parameter is likely to be slightly higher thank(e.g.,k + 3) to include more pairs of documents to train on, but perhaps not too high to avoid deviating too much from the desired target metric NDCG@klambdarank_norm
lambdarank_norm- default =
true, - type = bool
- default =
- used only in
lambdarankapplication - set this to
trueto normalize the lambdas for different queries, and improve the performance for unbalanced data set this to
falseto enforce the original lambdarank algorithmlabel_gain
label_gain- default =
0,1,3,7,15,31,63,...,2^30-1, - type = multi-double
- default =
- used only in
lambdarankapplication - relevant gain for labels. For example, the gain of label
2is3in case of default label gains -
Metric参数
metric
metric- default =
"", - type = multi-enum, aliases:
metrics,metric_types
- default =
- metric(s) to be evaluated on the evaluation set(s)
""(empty string or not specified) means that metric corresponding to specifiedobjectivewill be used (this is possible only for pre-defined objective functions, otherwise no evaluation metric will be added)"None"(string, not aNonevalue) means that no metric will be registered, aliases:na,null,customl1, absolute loss, aliases:mean_absolute_error,mae,regression_l1l2, square loss, aliases:mean_squared_error,mse,regression_l2,regressionrmse, root square loss, aliases:root_mean_squared_error,l2_rootquantile, Quantile regressionmape, MAPE loss, aliases:mean_absolute_percentage_errorhuber, Huber lossfair, Fair losspoisson, negative log-likelihood for Poisson regressiongamma, negative log-likelihood for Gamma regressiongamma_deviance, residual deviance for Gamma regressiontweedie, negative log-likelihood for Tweedie regressionndcg, NDCG, aliases:lambdarank,rank_xendcg,xendcg,xe_ndcg,xe_ndcg_mart,xendcg_martmap, MAP, aliases:mean_average_precisionauc, AUCaverage_precision, average precision scorebinary_logloss, log loss, aliases:binarybinary_error, for one sample:0for correct classification,1for error classificationauc_mu, AUC-mumulti_logloss, log loss for multi-class classification, aliases:multiclass,softmax,multiclassova,multiclass_ova,ova,ovrmulti_error, error rate for multi-class classificationcross_entropy, cross-entropy (with optional linear weights), aliases:xentropycross_entropy_lambda, “intensity-weighted” cross-entropy, aliases:xentlambdakullback_leibler, Kullback-Leibler divergence, aliases:kldiv
support multiple metrics, separated by
,metric_freq
metric_freq- default =
1, - type = int, aliases:
output_freq, constraints:metric_freq > 0
- default =
- frequency for metric output
Note: can be used only in CLI version
is_provide_training_metric
is_provide_training_metric- default =
false, - type = bool, aliases:
training_metric,is_training_metric,train_metric
- default =
- set this to
trueto output metric result over training dataset
Note: can be used only in CLI version
eval_at
eval_at- default =
1,2,3,4,5, - type = multi-int, aliases:
ndcg_eval_at,ndcg_at,map_eval_at,map_at
- default =
- used only with
ndcgandmapmetrics NDCG and MAP evaluation positions, separated by
,multi_error_top_k
multi_error_top_k- default =
1, - type = int, constraints:
multi_error_top_k > 0
- default =
- used only with
multi_errormetric - threshold for top-k multi-error metric
- the error on each sample is
0if the true class is among the topmulti_error_top_kpredictions, and1otherwise- more precisely, the error on a sample is
0if there are at leastnum_classes - multi_error_top_kpredictions strictly less than the prediction on the true class
- more precisely, the error on a sample is
when
multi_error_top_k=1this is equivalent to the usual multi-error metricauc_mu_weights
auc_mu_weights- default =
None, - type = multi-double
- default =
- used only with
auc_mumetric - list representing flattened matrix (in row-major order) giving loss weights for classification errors
- list should have
n * nelements, wherenis the number of classes - the matrix co-ordinate
[i, j]should correspond to thei * n + j-th element of the list if not specified, will use equal weights for all classes
Network参数
num_machinces
num_machines- default =
1, - type = int, aliases:
num_machine, constraints:num_machines > 0
- default =
- the number of machines for parallel learning application
this parameter is needed to be set in both socket and mpi versions
local_listen_port
local_listen_port- default =
12400, - type = int, aliases:
local_port,port, constraints:local_listen_port > 0
- default =
- TCP listen port for local machines
Note: don’t forget to allow this port in firewall settings before training
time_out
time_out- default =
120, - type = int, constraints:
time_out > 0
- default =
-
machine_list_filename
machine_list_filename- default =
"", - type = string, aliases:
machine_list_file,machine_list,mlist
- default =
- path of file that lists machines for this parallel learning application
each line contains one IP and one port for one machine. The format is
ip port(space as a separator)machines
machines- default =
"", - type = string, aliases:
workers,nodes
- default =
list of machines in the following format:
ip1:port1,ip2:port2GPU参数
gpu_platform_id
gpu_platform_id- default =
-1, - type = int
- default =
- OpenCL platform ID. Usually each GPU vendor exposes one OpenCL platform
-1means the system-wide default platform
Note: refer to GPU Targets for more details
gpu_device_id
gpu_device_id- default =
-1, - type = int
- default =
- OpenCL device ID in the specified platform. Each GPU in the selected platform has a unique device ID
-1means the default device in the selected platform
Note: refer to GPU Targets for more details
gpu_use_dp
gpu_use_dp- default =
false, - type = bool
- default =
set this to
trueto use double precision math on GPU (by default single precision is used in OpenCL implementation and double precision is used in CUDA implementation)num_gpu
num_gpu- default =
1, - type = int, constraints:
num_gpu > 0
- default =
- number of GPUs
- Note: can be used only in CUDA implementation
其他参数
将Score用于训练
如果我们的数据文件名字为train.txt,那么一开始的score文件应该命名为train.txt.init,然后把它和数据文件放到同一个文件夹下,这样LightGB会自动加载它。Score形式如下:0.5-0.10.9...
权重数据
LightGBM支持权重训练,使用一个文件来存储权重数据,数据大概如下所示:
如果数据文件的名字是1.00.50.8...
train.txt,权重文件应该命名为train.txt.weight,然后应该置于同一文件夹下,如果存在这个文件的话,LightGBM会自动加载。
同样,我们可以在数据文件中添加上权重这一列。查询数据
学习并且排序,需要查询训练数据的信息。LightGBM使用额外的文件来存储查询的数据,如下所示。
上面的数据:27表示第27行的样本属于1个query(查询),18代表18行的样本属于另一个query(查询)。数据应该由查询排序。271867...
如果数据文件的名字是train.txt,查询文件的名字应该为train.txt.query,然后置于同一个文件夹下。
同样也可以把query/group这一列放到数据文件中。
