算法

1.黑色星期五

https://www.kesci.com/mw/project/5f608358ae300e004601a386【仅仅还有一些可视化】pass
https://www.kesci.com/mw/project/5c6e79f7336a0d002c19a25c 【优秀的可视化和分析 https://www.kaggle.com/dabate/black-friday-examined-eda-apriori
https://www.kesci.com/mw/project/5d71b4bd8499bc002c0ad4ff 【借鉴1:优秀的可视化经验(多饼图),有关联分析】
https://www.kesci.com/mw/project/5f967f35e0eb3e003be4d452 【优秀的问题解答型数据分析经验】

2.黑色星期五 - 回归

  • XGB Regressor

https://www.kaggle.com/shivamsingh96/sales-prediction-xgb-regressor

  • LR Dtree RF XGB

https://www.kaggle.com/mayurdangar/blackfriday-insights-and-model

  • 改进XGB

https://www.kaggle.com/mooventhchiyan/rf-gb-xg-models

  • 单一XGB

https://www.kaggle.com/suryatejach/sales-prediction-black-friday
https://www.kaggle.com/annkurillose/insights-and-sales-prediction

  • DNN-LR

https://www.kaggle.com/muhammadayman/indistinct-features-explanation-lr-with-pytorch

3.黑色星期五 - 聚类

https://www.kesci.com/mw/project/5fd489751a34b90030b85a74

可视化

1.Kaggle黑色星期五交易数据及客户分析—Mysql和Tableau

https://blog.csdn.net/Violazou/article/details/105058542

2.知乎 kaggle黑色星期五

https://zhuanlan.zhihu.com/p/51576253

序号 网址 内容 备注
1 https://www.kaggle.com/vinaypratap/black-friday-sale-prediction-xgb-lgb-rf-stacked 少量数据分析
2.众数填充+编码策略+标准化+特征选择
模型:随机森林、XGB、LGB、集成模型
df[‘Age’] = df[‘Age’].map({‘0-17’:0,’18-25’:0,’26-35’:1,’36-45’:1,’46-50’:1,’51-55’:2,’55+’:2})
可用,2号文件
2 https://www.kaggle.com/ankitapaithankar/black-friday-sales-prediction RF+XGB+LGB+Catboost+stack model
3 https://www.kaggle.com/shamalip/black-friday-data-exploration 只有数据可视化 可用,英文多
4 https://www.kaggle.com/mayurdangar/blackfriday-insights-and-model 1.train_df.describe(include=’all’)

2.针对问题,进行优秀的可视化分析
可用,由英文问题。
5 https://www.kaggle.com/shivamsingh96/sales-prediction-xgb-regressor LR+RF+XGB
df[‘Age’] = df[‘Age’].map({‘0-17’:17,’18-25’:25,…

train[‘Product_ID’]=train[‘Product_ID’].str.slice(2).astype(int)
test[‘Product_ID’]=test[‘Product_ID’].str.slice(2).astype(int)

corr=train.corr()
plt.figure(figsize=(20,12))
sns.heatmap(corr,annot=True)
新的替换方式
新的相关性分析
6 https://www.kaggle.com/meghakanojia/black-friday-eda

1.先筛选出来完整的商品列表,计算线性回归分数,使用特征交叉计算线性回归和Ridge的分数
## Best fit: Polynomial+Ridge —> degree=10 , alpha=8.0
2.KNN
不错的想法
7 https://www.kaggle.com/suryatejach/sales-prediction-black-friday from sklearn.preprocessing import LabelEncoder
train[‘User_ID’] = train[‘User_ID’] - 1000000
le = LabelEncoder()
train[‘User_ID’] = le.fit_transform(train[‘User_ID’])
train[‘Product_ID’] = train[‘Product_ID’].str.replace(‘P00’, ‘’)
ss = StandardScaler()
train[‘Product_ID’] = ss.fit_transform(train[‘Product_ID’].values.reshape(-1, 1))
相关性分析表
XGB
新的替换策略
8 https://www.kaggle.com/kushagrakinjawadekar/black-friday-data 一般
9 https://www.kaggle.com/mooventhchiyan/rf-gb-xg-models 一般 结论
USer_ID和product_ID在领域中起着重要的作用,但是如果没有它们,模型的性能会更好(似乎令人困惑)
10 https://www.kaggle.com/annkurillose/insights-and-sales-prediction ensemble voting
r2 0.74566
11 https://www.kaggle.com/rimjimrazdan/black-friday 1.年龄取均值
r2 0.74
rmse 2500
12 https://www.kaggle.com/harkiratvasir/black-friday-practice 正常rsme 3000左右
13 https://www.kaggle.com/deeppatel23/black-friday 1.新的p2,p3填充策略
14 https://www.kaggle.com/muhammadayman/indistinct-features-explanation-lr-with-pytorch 大佬的漂亮可视化
15 https://www.kaggle.com/vishnu691999/black-friday-sales-prediction-analytics-vidhya XGB 2585
16 https://www.kaggle.com/simrangujrati/predicting-black-friday-sales 清晰 结构不错
17 https://www.kaggle.com/aye2121/black-friday-purchase-prediction 可以 逻辑结构值得借鉴
随机森林深度优化
18 https://www.kaggle.com/gabrielloye/bt2101-project-notebook R语言
19 https://www.kaggle.com/zaimeali1997/black-friday-sales-analysis 无了
20 https://www.kaggle.com/zaimeali1997/black-friday-v2-prediction 特征选择的方式不错,筛选某个因素
21 https://www.kaggle.com/deeprajbasu/blackfriday-genderclassification-knn KNN 83分 可用研究研究
22 https://www.kaggle.com/jvbj11/black-friday-kim 一般,仅有可视化和24同一个
23 https://www.kaggle.com/iamhungundji/lasso-regression-analysis 代码看不懂 预测购买的方法有:
多元线性回归:验证集的RMSE = 6416.093
变量的向后子集:验证集的RMSE = 3230.107
套索回归:验证集的RMSE = 2970.445
排行榜准确性(用于测试集):2992.02138074499
24 https://www.kaggle.com/pedrokim/black-friday-kim 一般,仅有可视化
25 https://www.kaggle.com/yaheaal/deep-learning-using-keras 大佬笔记 牛皮
26 https://www.kaggle.com/mohamedabdullah/beautiful-insights-into-black-friday-data 数据可视化大佬 值得借鉴
27 https://www.kaggle.com/sharmistha96/black-friday 仅有一些数据预处理
28 https://www.kaggle.com/prashant111/comprehensive-data-analysis-with-pandas pandas研究
29 https://www.kaggle.com/nimisha21/black-friday-regression-analysis 可视化很有逻辑 值得借鉴
30 https://www.kaggle.com/saifali2998/black-fridaytask-saif-credits-sirfawad 没看懂
31 https://www.kaggle.com/vikash1a2b3c/black-friday-using-only-user-and-product-data 矩阵分解
32 https://www.kaggle.com/florianrougier/big-data-black-friday 不错,逻辑清晰,有结论
33