经常能听到设计师大谈特谈数据分析,一般讲的是漏斗分析,或者分析留存、PV/UV之类的分析方法和细节,偶尔有些设计团队分享谷歌的GSM模型,但是很少听人讲数据分析的基础逻辑。这周我正好事情很多,就和大家简短的分享一下。
对于设计来讲,数据分析就4步:
- 制定指标:知道要去分析什么
- 衡量指标:什么是符合预期、什么是正常波动、什么是异常波动
- 拆解分析:假如数据不符合预期/出现异常波动,找到关键场景
- 分析原因:内部/外部原因
制定目标
项目目标:也就是谷歌GSM里的“Goal”。项目开始时,你就应该了解:这个项目的业务目的是什么?是提升老用户的平台粘性还是拉新促活?是提升熟练用户的操作效率从而提升平台体验,还是帮助新用户更好的学会使用产品从而降低平台运营成本?项目目标是整个设计项目的根本评判标准,虽然一般不是设计定的,但我们可以在开工之前问一嘴。
设计目标:大部分情况下,设计目标和项目目标是两个不同的目标,设计目标往往只看行为指标(PV/UV/时长等等)和态度指标(满意度/NPS等等)。
设计目标可以是项目目标的一部分,但是因为项目目标经常包含和行为/态度数据(也就是PV/UV/满意度)无关的滞后业务指标(比如GMV),这种业务指标对设计没什么指导价值,也很难证明设计对业务指标有直接影响,所以一般不建议把项目目标直接作为设计目标。
衡量指标
现在你已经有了自己的设计目标——比如你的项目满意度是3.5,那3.5是好还是差?这是需要定义的。我在之前的这篇文章中讲过基本功!交互嘎韭菜常见误区,互联网设计是一种带点创意的、可证伪的实证研究,为了让我们这个设计可证伪,我们需要划出那条证明/证伪的界限。一般而言有三种办法:
纵向趋势比较:我们可以和上一个时间周期做对比(比如本月和上个月的满意度对比,这叫环比);或者和一个更大的时间周期中相同的节点做对比(比如今年1月和去年1月的满意度对比,这叫同比)
横向比较:和竞品或者和平台其他模块比较,比如虽然我们的功能满意度只有2,但是竞品是1,说明总体我们解决的比他们稍微好些。
基线比较:有些量表(比如NPS、SUS)自带了推荐的基线值,低于基线(比如NPS的7分)可以说明体验就是不太好。
拆解分析
讲这一块之前我们先举个例子,北京某大学有两个学院,经济学院和教育学院。广东/天津两地各有700个学生报考了这个大学,其中广东省有380人高中,而天津只有260个人考中了,假如你来做这个分析,现在能得出结论:广东省的录取率比天津省高吗?
不能。
假如我们以学院-省份两个维度去拆解数据,可能会发现:经济学是当年大热门专业,录取门槛极高,而教育学院没招满,录取分数线比较低。广东省报考某大学的学生报教育学院的比较多,而天津报考某大学的学生报经济学院的多。这么一算,反而在两个院中,天津学生的录取率都比广东学生高
这件事情说明,我们需要探索、分析所有可能对总体情况造成影响的场景或者指标,否则分析结果就会和事实产生偏差。以满意度为例,有几种拆解维度:
基于时间的:缩小分析的时间单位,是否在某一周内满意度骤降,导致一个月内平均满意度都有下跌?
基于人口统计学的:不同年龄段/性别/地区/语言的用户,是否在满意度上有差异?是否有明显不满意的群体?
基于用户技能/行为习惯的:新老用户、小白/专家用户、不同用户角色、不同诉求的用户是否在满意度上有差异?
基于任务环节的:不同任务环节、甚至不同页面,是否在满意度上有差异?
分析原因
拆解不同维度分析后,我们基本可以定位到具体影响设计目标的关键问题点:比如一部分老用户的满意度下降了,或者1-2月间的PV大幅下降导致整体指标受影响。最后,我们需要为这些现象找到原因。
有时原因是周期性的、不可避免的,比如一般改版后老用户都需要一点时间去适应新的设计方案,这会导致短期内满意度降低,但2个月内会有慢慢回升。又或者节日/突发性事件都会对某些产品/设计产生影响。
有时原因是外部的:比如虽然我们没有做什么事情,但是竞品上线了新功能,或者因为政策局势的变化引起了变化。
当然,更多的时候原因是内部的、和设计相关的,比如设计中遗留的可用性问题或者部分边缘场景没有被支持到。为了挖掘出这些原因,往往我们需要和用户实地访谈,或者至少打打电话。因为问卷、取数的结论比较浮于表面,只能给到浅层的概念,而深刻的洞见、真实的反馈,只能在人和人沟通的时候渐渐表露出来。