一、建表规约

  1. 【强制】表达是与否概念的字段,必须使用 is_xxx 的方式命名,数据类型是 unsigned tinyint(1 表示是,0 表示否)。

    个人推荐命名为xxx_flag(1是,0否),避免is命名问题
    说明:任何字段如果为非负数,必须是 unsigned。
    注意:POJO 类中的任何布尔类型的变量,都不要加 is 前缀,所以,需要在设置从 is_xxx 到 Xxx 的映射关系。数据库表示是与否的值,使用 tinyint 类型,坚持 is_xxx 的命名方式是为了明确其取值含义与取值范围。
    正例:表达逻辑删除的字段名 is_deleted,1 表示删除,0 表示未删除。

  2. 【强制】表名、字段名必须使用小写字母或数字,禁止出现数字开头,禁止两个下划线中间只出现数字。数据库字段名的修改代价很大,因为无法进行预发布,所以字段名称需要慎重考虑。
    说明:MySQL 在 Windows 下不区分大小写,但在 Linux 下默认是区分大小写。因此,数据库名、表名、字段名,都不允许出现任何大写字母,避免节外生枝。
    正例:aliyun_admin,rdc_config,level3_name
    反例:AliyunAdmin,rdcConfig,level_3_name

  3. 【强制】表名不使用复数名词。
    说明:表名应该仅仅表示表里面的实体内容,不应该表示实体数量,对应于 DO 类名也是单数形式,符合表达习惯。

  4. 【强制】禁用保留字,如 desc、range、match、delayed 等,请参考 MySQL 官方保留字。

  5. 【强制】主键索引名为 pk字段名;唯一索引名为 uk字段名;普通索引名则为 idx字段名。
    说明:pk
    即 primary key;uk 即 unique key;idx即 index 的简称。

  6. 【强制】小数类型为decimal,禁止使用 float 和 double。
    说明:在存储的时候,float 和 double 都存在精度损失的问题,很可能在比较值的时候,得到不正确的结果。如果存储的数据范围超过 decimal 的范围,建议将数据拆成整数和小数并分开存储。

  7. 【强制】如果存储的字符串长度几乎相等,使用 char 定长字符串类型。

  8. 【强制】varchar 是可变长字符串,不预先分配存储空间,长度不要超过5000,如果存储长度大于此值,定义字段类型为 text,独立出来一张表,用主键来对应,避免影响其它字段索引效率。

  9. 【强制】表必备三字段:id, create_time, update_time。
    说明:其中 id 必为主键,类型为 bigint unsigned、单表时自增、步长为 1。create_time, update_time 的类型均为 datetime 类型,前者现在时表示主动式创建,后者过去分词表示被动式更新。

  10. 【推荐】表的命名最好是遵循“业务名称_表的作用”。
    正例:alipay_task / force_project / trade_config

  11. 【推荐】库名与应用名称尽量一致。
    12. 【推荐】如果修改字段含义或对字段表示的状态追加时,需要及时更新字段注释。
    13. 【推荐】字段允许适当冗余,以提高查询性能,但必须考虑数据一致。冗余字段应遵循:
    (1 不是频繁修改的字段。
    (2 不是唯一索引的字段。
    (3 不是 varchar 超长字段,更不能是text 字段。
    正例:各业务线经常冗余存储商品名称,避免查询时需要调用IC 服务获取。

  12. 【推荐】单表行数超过 500 万行或者单表容量超过 2GB,才推荐进行分库分表。
    说明:如果预计三年后的数据量根本达不到这个级别,请不要在创建表时就分库分表。
    15. 【参考】合适的字符存储长度,不但节约数据库表空间、节约索引存储,更重要的是提升检索速度。
    正例:无符号值可以避免误存负数,且扩大了表示范围。

对象 年龄区间 类型 字节 表示范围
150 岁之内 tinyint unsigned 1 无符号值:0 到 255
数百岁 smallint unsigned 2 无符号值:0 到 65535
恐龙化石 数千万年 int unsigned 4 无符号值:0 到约 43 亿
太阳 约 50 亿年 bigint unsigned 8 无符号值:0 到约 10 的 19 次方

二、索引规约

  1. 【强制】业务上具有唯一特性的字段,即使是组合字段,也必须建成唯一索引。
    说明:不要以为唯一索引影响了 insert 速度,这个速度损耗可以忽略,但提高查找速度是明显的;另外,即使在应用层做了非常完善的校验控制,只要没有唯一索引,根据墨菲定律,必然有脏数据产生
    2. 【强制】超过三个表禁止 join。需要 join 的字段,数据类型保持绝对一致;多表关联查询时,保证被关联的字段需要有索引。
    说明:即使双表 join 也要注意表索引、SQL 性能。 (实际开发中,一般是先写完,慢了再优化!敏捷,敏捷,敏捷,谁要你性能?)

  2. 【强制】在 varchar 字段上建立索引时,必须指定索引长度,没必要对全字段建立索引,根据实际文本区分度决定索引长度。
    说明:索引的长度与区分度是一对矛盾体,一般对字符串类型数据,长度为 20 的索引,区分度会高达 90% 以上,可以使用 count(distinct left(列名, 索引长度))/count(*)的区分度来确定。

  3. 【强制】页面搜索严禁左模糊或者全模糊,如果需要请走搜索引擎来解决。
    说明:索引文件具有 B-Tree 的最左前缀匹配特性,如果左边的值未确定,那么无法使用此索引。

  4. 【推荐】如果有order by 的场景,请注意利用索引的有序性。order by 最后的字段是组合索引的一部分,并且放在索引组合顺序的最后,避免出现 file_sort 的情况,影响查询性能。
    正例:where a=? and b=? order by c; 索引:a_b_c
    反例:索引如果存在范围查询,那么索引有序性无法利用,如:WHERE a>10 ORDER BY b; 索引 a_b 无法排序。

  5. 【推荐】利用覆盖索引来进行查询操作,避免回表。
    说明:如果一本书需要知道第 11 章是什么标题,会翻开第 11 章对应的那一页吗?目录浏览一下就好,这个目录就是起到覆盖索引的作用。
    正例:能够建立索引的种类分为主键索引、唯一索引、普通索引三种,而覆盖索引只是一种查询的一种效果,用explain 的结果,extra 列会出现:using index。

  6. 【推荐】利用延迟关联或者子查询优化超多分页场景。
    说明:MySQL 并不是跳过 offset 行,而是取 offset+N 行,然后返回放弃前 offset 行,返回 N 行,那当 offset 特别大的时候,效率就非常的低下,要么控制返回的总页数,要么对超过特定阈值的页数进行 SQL 改写。
    正例:先快速定位需要获取的 id 段,然后再关联:
    SELECT t1.* FROM 表 1 as t1, (select id from 表 1 where 条件 LIMIT 100000,20 ) as t2 where t1.id=t2.id

  7. 【推荐】SQL 性能优化的目标:至少要达到 range 级别,要求是 ref 级别,如果可以是 consts 最好。
    说明:
    1) consts 单表中最多只有一个匹配行(主键或者唯一索引),在优化阶段即可读取到数据。
    2) ref 指的是使用普通的索引(normal index)。
    3) range 对索引进行范围检索。
    反例:explain 表的结果,type=index,索引物理文件全扫描,速度非常慢,这个 index 级别比较 range 还低,与全表扫描是小巫见大巫。

  8. 【推荐】建组合索引的时候,区分度最高的在最左边。
    正例:如果 where a=? and b=?,a 列的几乎接近于唯一值,那么只需要单建 idx_a 索引即可。
    说明:存在非等号和等号混合判断条件时,在建索引时,请把等号条件的列前置。如:where c>? and d=?
    那么即使c 的区分度更高,也必须把 d 放在索引的最前列,即建立组合索引 idx_d_c。

  9. 【推荐】防止因字段类型不同造成的隐式转换,导致索引失效。
    11. 【参考】创建索引时避免有如下极端误解:
    1) 索引宁滥勿缺。认为一个查询就需要建一个索引。
    2) 吝啬索引的创建。认为索引会消耗空间、严重拖慢记录的更新以及行的新增速度。
    3) 抵制惟一索引。认为惟一索引一律需要在应用层通过“先查后插”方式解决。

    三、SQL 语句

  10. 【强制】不要使用count(列名)或 count(常量)来替代 count(),count()是 SQL92 定义的标准统计行数的语法,跟数据库无关,跟 NULL 和非 NULL 无关。
    说明:count(*)会统计值为 NULL 的行,而 count(列名)不会统计此列为NULL 值的行。

  11. 【强制】count(distinct col) 计算该列除NULL 之外的不重复行数,注意 count(distinct col1, col2) 如果其中一列全为 NULL,那么即使另一列有不同的值,也返回为 0。
    3. 【强制】当某一列的值全是 NULL 时,count(col)的返回结果为 0,但 sum(col)的返回结果为
    NULL,因此使用sum()时需注意 NPE 问题。
    正例:可以使用如下方式来避免 sum 的 NPE 问题:SELECT IFNULL(SUM(column), 0) FROM table;
    4. 【强制】使用 ISNULL()来判断是否为 NULL 值。
    说明:NULL与任何值的直接比较都为 NULL。
    1) NULL<>NULL 的返回结果是 NULL,而不是 false。
    2) NULL=NULL 的返回结果是 NULL,而不是 true。
    3) NULL<>1 的返回结果是 NULL,而不是 true。
    反例:在 SQL 语句中,如果在 null 前换行,影响可读性。select * from table where column1 is null and column3 is not null; 而ISNULL(column)是一个整体,简洁易懂。从性能数据上分析,ISNULL(column)执行效率更快一些。
    5. 【强制】代码中写分页查询逻辑时,若 count 为 0 应直接返回,避免执行后面的分页语句。
    6. 【强制】不得使用外键与级联,一切外键概念必须在应用层解决。
    说明:(概念解释)学生表中的 student_id 是主键,那么成绩表中的 student_id 则为外键。如果更新学生表中的 student_id,同时触发成绩表中的 student_id 更新,即为级联更新。外键与级联更新适用于单机低并发,不适合分布式、高并发集群;级联更新是强阻塞,存在数据库更新风暴的风险;外键影响数据库的插入速度。
    7. 【强制】禁止使用存储过程,存储过程难以调试和扩展,更没有移植性。
    8. 【强制】数据订正(特别是删除或修改记录操作)时,要先select,避免出现误删除,确认无误才能执行更新语句。
    9. 【强制】对于数据库中表记录的查询和变更,只要涉及多个表,都需要在列名前加表的别名(或表名)进行限定。
    说明:对多表进行查询记录、更新记录、删除记录时,如果对操作列没有限定表的别名(或表名),并且操作列在多个表中存在时,就会抛异常。
    正例:select t1.name from table_first as t1 , table_second as t2 where t1.id=t2.id;
    反例:在某业务中,由于多表关联查询语句没有加表的别名(或表名)的限制,正常运行两年后,最近在某个表中增加一个同名字段,在预发布环境做数据库变更后,线上查询语句出现出 1052 异常:Column
    ‘name’ in field list is ambiguous。
    10. 【推荐】SQL 语句中表的别名前加 as,并且以 t1、t2、t3、…的顺序依次命名。
    说明:1)别名可以是表的简称,或者是依照表在 SQL 语句中出现的顺序,以 t1、t2、t3 的方式命名。2)别名前加 as 使别名更容易识别。
    正例:select t1.name from table_first as t1, table_second as t2 where t1.id=t2.id;
    11. 【推荐】in 操作能避免则避免,若实在避免不了,需要仔细评估in 后边的集合元素数量,控制在 1000 个之内。
    12. 【参考】因国际化需要,所有的字符存储与表示,均采用 utf8 字符集,那么字符计数方法需要注意。
    说明:
    SELECT LENGTH(“轻松工作”); 返回为 12
    SELECT CHARACTER_LENGTH(“轻松工作”); 返回为 4
    如果需要存储表情,那么选择 utf8mb4 来进行存储,注意它与 utf8 编码的区别。
    13. 【参考】TRUNCATE TABLE 比 DELETE 速度快,且使用的系统和事务日志资源少,但 TRUNCATE 无事务且不触发 trigger,有可能造成事故,故不建议在开发代码中使用此语句。
    说明:TRUNCATE TABLE 在功能上与不带 WHERE 子句的 DELETE 语句相同。

    四、ORM 映射

  12. 【强制】在表查询中,一律不要使用 * 作为查询的字段列表,需要哪些字段必须明确写明。
    说明:1)增加查询分析器解析成本。2)增减字段容易与 resultMap 配置不一致。3)无用字段增加网络消耗,尤其是 text 类型的字段。
    2. 【强制】POJO 类的布尔属性不能加 is,而数据库字段必须加 is_,要求在 resultMap 中进行字段与属性之间的映射。
    说明:参见定义 POJO 类以及数据库字段定义规定,在 sql.xml 增加映射,是必须的。
    3. 【强制】不要用resultClass 当返回参数,即使所有类属性名与数据库字段一一对应,也需要定义;反过来,每一个表也必然有一个与之对应。
    说明:配置映射关系,使字段与 DO 类解耦,方便维护。
    4. 【强制】sql.xml 配置参数使用:#{},#param# 不要使用${}此种方式容易出现 SQL 注入。
    5. 【强制】iBATIS 自带的 queryForList(String statementName,int start,int size)不推荐使用。
    说明:其实现方式是在数据库取到 statementName对应的 SQL 语句的所有记录,再通过 subList 取 start,size 的子集合。正例:
    Map map =newHashMap<>(16);
    map.put(“start”, start);
    map.put(“size”, size);
    6. 【强制】不允许直接拿 HashMap 与 Hashtable 作为查询结果集的输出。
    反例:某同学为避免写一个xxx,直接使用HashTable 来接收数据库返回结果,结果出现日常是把 bigint 转成 Long 值,而线上由于数据库版本不一样,解析成 BigInteger,导致线上问题。
    7. 【强制】更新数据表记录时,必须同时更新记录对应的 update_time 字段值为当前时间。
    8. 【推荐】不要写一个大而全的数据更新接口。传入为 POJO 类,不管是不是自己的目标更新字
    段,都进行 update table set c1=value1,c2=value2,c3=value3; 这是不对的。执行 SQL 时,不要更新无改动的字段,一是易出错;二是效率低;三是增加 binlog 存储。
    9. 【参考】@Transactional 事务不要滥用。事务会影响数据库的 QPS,另外使用事务的地方需要考虑各方面的回滚方案,包括缓存回滚、搜索引擎回滚、消息补偿、统计修正等。
    10. 【参考】中的 compareValue 是与属性值对比的常量,一般是数字,表示相等时带上此条件;表示不为空且不为 null 时执行;表示不为 null 值时执行。