Element
在“Widget简介”一节,我们介绍了Widget和Element的关系,我们知道最终的UI树其实是由一个个独立的Element节点构成。我们也说过组件最终的Layout、渲染都是通过 RenderObject 来完成的,从创建到渲染的大体流程是:
- 根据Widget生成Element
- 然后创建相应的 RenderObject 并关联到 Element.renderObject 属性上
- 最后再通过 RenderObject 来完成布局排列和绘制
Element就是Widget在UI树具体位置的一个实例化对象,大多数Element只有唯一的renderObject,但还有一些Element会有多个子节点,如继承自RenderObjectElement的一些类,比如 MultiChildRenderObjectElement。最终所有Element的RenderObject构成一棵树,我们称之为”Render Tree“即”渲染树“。总结一下,我们可以认为Flutter的UI系统包含三棵树:Widget树、Element树、渲染树。他们的依赖关系是: Element树根据Widget树生成,而渲染树又依赖于Element树,如图所示:
现在我们重点看一下Element,Element的生命周期如下
- Framework 调用 Widget.createElement 创建一个Element实例,记为 element
- Framework 调用 element.mount(parentElement,newSlot)
- mount方法中首先调用 element 所对应Widget的 createRenderObject 方法创建与 element 相关联的RenderObject对象,
- 然后调用 element.attachRenderObject 方法将element.renderObject添加到渲染树中插槽指定的位置(这一步不是必须的,一般发生在Element树结构发生变化时才需要重新attach)。插入到渲染树后的element就处于“active”状态,处于“active”状态后就可以显示在屏幕上了(可以隐藏)。
- 当有父Widget的配置数据改变时,同时其 State.build 返回的Widget结构与之前不同,此时就需要重新构建对应的Element树
- 为了进行Element复用,在Element重新构建前会先尝试是否可以复用旧树上相同位置的 element,element 节点在更新前都会调用其对应Widget的canUpdate方法,如果返回true,则复用旧Element,旧的Element会使用新Widget配置数据更新,反之则会创建一个新的Element。Widget.canUpdate 主要是判断newWidget与oldWidget的runtimeType和key是否同时相等,如果同时相等就返回true,否则就会返回false。根据这个原理,当我们需要强制更新一个Widget时,可以通过指定不同的Key来避免复用。
- 当有祖先Element决定要移除element 时(如Widget树结构发生了变化,导致 element 对应的Widget被移除),这时该祖先Element就会调用 deactivateChild 方法来移除它,移除后element.renderObject也会被从渲染树中移除,然后Framework会调用 element.deactivate 方法,这时element状态变为“inactive”状态。
- “inactive”态的element将不会再显示到屏幕。为了避免在一次动画执行过程中反复创建、移除某个特定element,“inactive”态的 element 在当前动画最后一帧结束前都会保留,如果在动画执行结束后它还未能重新变成“active”状态,Framework就会调用其 unmount 方法将其彻底移除,这时 element 的状态为defunct,它将永远不会再被插入到树中。
- 如果 element 要重新插入到Element树的其它位置,如element或element的祖先拥有一个 GlobalKey(用于全局复用元素),那么Framework会先将 element 从现有位置移除,然后再调用其activate方法,并将其renderObject重新attach到渲染树。
看完Element的生命周期,可能有些读者会有疑问,开发者会直接操作Element树吗? 其实对于开发者来说,大多数情况下只需要关注Widget树就行,Flutter框架已经将对Widget树的操作映射到了Element树上,这可以极大的降低复杂度,提高开发效率。 但是了解Element对理解整个Flutter UI框架是至关重要的,Flutter正是通过Element这个纽带将Widget和RenderObject关联起来,了解Element层不仅会帮助读者对Flutter UI框架有个清晰的认识,而且也会提高自己的抽象能力和设计能力。另外在有些时候,我们必须得直接使用Element对象来完成一些操作,比如获取主题Theme数据,具体细节将在下文介绍。
BuildContext
我们已经知道,StatelessWidget 和 StatefulWidget 的 build 方法都会传一个 BuildContext 对象:
Widget build(BuildContext context) {}
我们也知道,在很多时候我们都需要使用这个 context 做一些事,比如:
Navigator.push(context, route) //入栈新路由
Theme.of(context) //获取主题
Localizations.of(context, type) //获取Local
context.size //获取上下文大小
context.findRenderObject() //查找当前或最近的一个祖先RenderObject
那么 BuildContext 到底是什么呢,查看其定义,发现其是一个抽象接口类:
abstract class BuildContext {
Widget get widget;
BuildOwner get owner;
RenderObject findRenderObject();
Size get size;
@Deprecated(
'Use dependOnInheritedElement instead. '
'This feature was deprecated after v1.12.1.'
)
InheritedWidget inheritFromElement(InheritedElement ancestor, { Object aspect });
InheritedWidget dependOnInheritedElement(InheritedElement ancestor, { Object aspect });
@Deprecated(
'Use dependOnInheritedWidgetOfExactType instead. '
'This feature was deprecated after v1.12.1.'
)
InheritedWidget inheritFromWidgetOfExactType(Type targetType, { Object aspect });
T dependOnInheritedWidgetOfExactType<T extends InheritedWidget>({ Object aspect });
@Deprecated(
'Use getElementForInheritedWidgetOfExactType instead. '
'This feature was deprecated after v1.12.1.'
)
InheritedElement ancestorInheritedElementForWidgetOfExactType(Type targetType);
InheritedElement getElementForInheritedWidgetOfExactType<T extends InheritedWidget>();
@Deprecated(
'Use findAncestorWidgetOfExactType instead. '
'This feature was deprecated after v1.12.1.'
)
Widget ancestorWidgetOfExactType(Type targetType);
T findAncestorWidgetOfExactType<T extends Widget>();
@Deprecated(
'Use findAncestorStateOfType instead. '
'This feature was deprecated after v1.12.1.'
)
State ancestorStateOfType(TypeMatcher matcher);
T findAncestorStateOfType<T extends State>();
@Deprecated(
'Use findRootAncestorStateOfType instead. '
'This feature was deprecated after v1.12.1.'
)
State rootAncestorStateOfType(TypeMatcher matcher);
T findRootAncestorStateOfType<T extends State>();
@Deprecated(
'Use findAncestorRenderObjectOfType instead. '
'This feature was deprecated after v1.12.1.'
)
RenderObject ancestorRenderObjectOfType(TypeMatcher matcher);
T findAncestorRenderObjectOfType<T extends RenderObject>();
void visitAncestorElements(bool visitor(Element element));
void visitChildElements(ElementVisitor visitor);
DiagnosticsNode describeElement(String name, {DiagnosticsTreeStyle style = DiagnosticsTreeStyle.errorProperty});
DiagnosticsNode describeWidget(String name, {DiagnosticsTreeStyle style = DiagnosticsTreeStyle.errorProperty});
List<DiagnosticsNode> describeMissingAncestor({ @required Type expectedAncestorType });
DiagnosticsNode describeOwnershipChain(String name);
}
那这个 context 对象对应的实现类到底是谁呢?我们顺藤摸瓜,发现 build 调用是发生在
- StatelessWidget 对应的 StatelessElement
- StatefulWidget 对应的 StatefulElement
StatelessElement 中
/// An [Element] that uses a [StatelessWidget] as its configuration.
class StatelessElement extends ComponentElement {
/// Creates an element that uses the given widget as its configuration.
StatelessElement(StatelessWidget widget) : super(widget);
@override
StatelessWidget get widget => super.widget as StatelessWidget;
@override
Widget build() => widget.build(this);
@override
void update(StatelessWidget newWidget) {
super.update(newWidget);
assert(widget == newWidget);
_dirty = true;
rebuild();
}
}
StatelessElement 中:
/// An [Element] that uses a [StatefulWidget] as its configuration.
class StatefulElement extends ComponentElement {
/// Creates an element that uses the given widget as its configuration.
StatefulElement(StatefulWidget widget)
: _state = widget.createState(),
super(widget) {
assert(() {
if (!state._debugTypesAreRight(widget)) {
throw FlutterError.fromParts(<DiagnosticsNode>[
ErrorSummary('StatefulWidget.createState must return a subtype of State<${widget.runtimeType}>'),
ErrorDescription(
'The createState function for ${widget.runtimeType} returned a state '
'of type ${state.runtimeType}, which is not a subtype of '
'State<${widget.runtimeType}>, violating the contract for createState.',
),
]);
}
return true;
}());
assert(state._element == null);
state._element = this;
assert(
state._widget == null,
'The createState function for $widget returned an old or invalid state '
'instance: ${state._widget}, which is not null, violating the contract '
'for createState.',
);
state._widget = widget;
assert(state._debugLifecycleState == _StateLifecycle.created);
}
@override
Widget build() => state.build(this);
/// The [State] instance associated with this location in the tree.
///
/// There is a one-to-one relationship between [State] objects and the
/// [StatefulElement] objects that hold them. The [State] objects are created
/// by [StatefulElement] in [mount].
State<StatefulWidget> get state => _state!;
State<StatefulWidget>? _state;
@override
void reassemble() {
if (_debugShouldReassemble(_debugReassembleConfig, _widget)) {
state.reassemble();
}
super.reassemble();
}
@override
void _firstBuild() {
assert(state._debugLifecycleState == _StateLifecycle.created);
try {
_debugSetAllowIgnoredCallsToMarkNeedsBuild(true);
final Object? debugCheckForReturnedFuture = state.initState() as dynamic;
assert(() {
if (debugCheckForReturnedFuture is Future) {
throw FlutterError.fromParts(<DiagnosticsNode>[
ErrorSummary('${state.runtimeType}.initState() returned a Future.'),
ErrorDescription('State.initState() must be a void method without an `async` keyword.'),
ErrorHint(
'Rather than awaiting on asynchronous work directly inside of initState, '
'call a separate method to do this work without awaiting it.',
),
]);
}
return true;
}());
} finally {
_debugSetAllowIgnoredCallsToMarkNeedsBuild(false);
}
assert(() {
state._debugLifecycleState = _StateLifecycle.initialized;
return true;
}());
state.didChangeDependencies();
assert(() {
state._debugLifecycleState = _StateLifecycle.ready;
return true;
}());
super._firstBuild();
}
@override
void performRebuild() {
if (_didChangeDependencies) {
state.didChangeDependencies();
_didChangeDependencies = false;
}
super.performRebuild();
}
@override
void update(StatefulWidget newWidget) {
super.update(newWidget);
assert(widget == newWidget);
final StatefulWidget oldWidget = state._widget!;
// We mark ourselves as dirty before calling didUpdateWidget to
// let authors call setState from within didUpdateWidget without triggering
// asserts.
_dirty = true;
state._widget = widget as StatefulWidget;
try {
_debugSetAllowIgnoredCallsToMarkNeedsBuild(true);
final Object? debugCheckForReturnedFuture = state.didUpdateWidget(oldWidget) as dynamic;
assert(() {
if (debugCheckForReturnedFuture is Future) {
throw FlutterError.fromParts(<DiagnosticsNode>[
ErrorSummary('${state.runtimeType}.didUpdateWidget() returned a Future.'),
ErrorDescription( 'State.didUpdateWidget() must be a void method without an `async` keyword.'),
ErrorHint(
'Rather than awaiting on asynchronous work directly inside of didUpdateWidget, '
'call a separate method to do this work without awaiting it.',
),
]);
}
return true;
}());
} finally {
_debugSetAllowIgnoredCallsToMarkNeedsBuild(false);
}
rebuild();
}
@override
void activate() {
super.activate();
state.activate();
// Since the State could have observed the deactivate() and thus disposed of
// resources allocated in the build method, we have to rebuild the widget
// so that its State can reallocate its resources.
assert(_lifecycleState == _ElementLifecycle.active); // otherwise markNeedsBuild is a no-op
markNeedsBuild();
}
@override
void deactivate() {
state.deactivate();
super.deactivate();
}
@override
void unmount() {
super.unmount();
state.dispose();
assert(() {
if (state._debugLifecycleState == _StateLifecycle.defunct)
return true;
throw FlutterError.fromParts(<DiagnosticsNode>[
ErrorSummary('${state.runtimeType}.dispose failed to call super.dispose.'),
ErrorDescription(
'dispose() implementations must always call their superclass dispose() method, to ensure '
'that all the resources used by the widget are fully released.',
),
]);
}());
state._element = null;
// Release resources to reduce the severity of memory leaks caused by
// defunct, but accidentally retained Elements.
_state = null;
}
@override
InheritedWidget dependOnInheritedElement(Element ancestor, { Object? aspect }) {
assert(ancestor != null);
assert(() {
final Type targetType = ancestor.widget.runtimeType;
if (state._debugLifecycleState == _StateLifecycle.created) {
throw FlutterError.fromParts(<DiagnosticsNode>[
ErrorSummary('dependOnInheritedWidgetOfExactType<$targetType>() or dependOnInheritedElement() was called before ${state.runtimeType}.initState() completed.'),
ErrorDescription(
'When an inherited widget changes, for example if the value of Theme.of() changes, '
"its dependent widgets are rebuilt. If the dependent widget's reference to "
'the inherited widget is in a constructor or an initState() method, '
'then the rebuilt dependent widget will not reflect the changes in the '
'inherited widget.',
),
ErrorHint(
'Typically references to inherited widgets should occur in widget build() methods. Alternatively, '
'initialization based on inherited widgets can be placed in the didChangeDependencies method, which '
'is called after initState and whenever the dependencies change thereafter.',
),
]);
}
if (state._debugLifecycleState == _StateLifecycle.defunct) {
throw FlutterError.fromParts(<DiagnosticsNode>[
ErrorSummary('dependOnInheritedWidgetOfExactType<$targetType>() or dependOnInheritedElement() was called after dispose(): $this'),
ErrorDescription(
'This error happens if you call dependOnInheritedWidgetOfExactType() on the '
'BuildContext for a widget that no longer appears in the widget tree '
'(e.g., whose parent widget no longer includes the widget in its '
'build). This error can occur when code calls '
'dependOnInheritedWidgetOfExactType() from a timer or an animation callback.',
),
ErrorHint(
'The preferred solution is to cancel the timer or stop listening to the '
'animation in the dispose() callback. Another solution is to check the '
'"mounted" property of this object before calling '
'dependOnInheritedWidgetOfExactType() to ensure the object is still in the '
'tree.',
),
ErrorHint(
'This error might indicate a memory leak if '
'dependOnInheritedWidgetOfExactType() is being called because another object '
'is retaining a reference to this State object after it has been '
'removed from the tree. To avoid memory leaks, consider breaking the '
'reference to this object during dispose().',
),
]);
}
return true;
}());
return super.dependOnInheritedElement(ancestor as InheritedElement, aspect: aspect);
}
/// This controls whether we should call [State.didChangeDependencies] from
/// the start of [build], to avoid calls when the [State] will not get built.
/// This can happen when the widget has dropped out of the tree, but depends
/// on an [InheritedWidget] that is still in the tree.
///
/// It is set initially to false, since [_firstBuild] makes the initial call
/// on the [state]. When it is true, [build] will call
/// `state.didChangeDependencies` and then sets it to false. Subsequent calls
/// to [didChangeDependencies] set it to true.
bool _didChangeDependencies = false;
@override
void didChangeDependencies() {
super.didChangeDependencies();
_didChangeDependencies = true;
}
@override
DiagnosticsNode toDiagnosticsNode({ String? name, DiagnosticsTreeStyle? style }) {
return _ElementDiagnosticableTreeNode(
name: name,
value: this,
style: style,
stateful: true,
);
}
@override
void debugFillProperties(DiagnosticPropertiesBuilder properties) {
super.debugFillProperties(properties);
properties.add(DiagnosticsProperty<State<StatefulWidget>>('state', _state, defaultValue: null));
}
}
通过上面我们发现build传递的参数是 this,很明显!
- BuildContext 就是 StatelessElement。
- StatefulWidget 的 context 是 StatefulElement。
但 StatelessElement 和 StatefulElement 本身并没有实现 BuildContext 接口,继续跟踪代码,发现它们间接继承自Element 类,然后查看 Element 类定义,发现 Element 类果然实现了BuildContext接口:
class Element extends DiagnosticableTree implements BuildContext {
...
}
至此真相大白,BuildContext就是widget对应的Element
所以我们可以通过 context 在 StatelessWidget 和 StatefulWidget 的 build 方法中直接访问Element对象。我们获取主题数据的代码 Theme.of(context) 内部正是调用了Element的dependOnInheritedWidgetOfExactType()方法。
思考题:为什么build方法的参数不定义成Element对象,而要定义成BuildContext ?
进阶
我们可以看到 Element是Flutter UI框架内部连接widget和 RenderObject 的纽带
大多数时候开发者只需要关注widget层即可,但是widget层有时候并不能完全屏蔽 Element 细节,所以Framework在 StatelessWidget 和 StatefulWidget 中通过build方法参数又将 Element 对象也传递给了开发者,这样一来,开发者便可以在需要时直接操作 Element 对象。那么现在笔者提两个问题,请读者先自己思考一下:
- 如果没有widget层,单靠 Element 层是否可以搭建起一个可用的UI框架?如果可以应该是什么样子?
- Flutter UI框架能不做成响应式吗?
对于问题1,答案当然是肯定的,因为我们之前说过widget树只是 Element 树的映射,我们完全可以直接通过Element 来搭建一个UI框架。下面举一个例子:
我们通过纯粹的Element来模拟一个 StatefulWidget 的功能,假设有一个页面,该页面有一个按钮,按钮的文本是一个9位数,点击一次按钮,则对9个数随机排一次序,代码如下:
import 'package:flutter/material.dart';
void main() => runApp(MyApp());
class MyApp extends StatelessWidget {
@override
Widget build(BuildContext context) {
return MaterialApp(
title: 'Flutter Demo',
theme: ThemeData(
primarySwatch: Colors.blue,
),
home:
Scaffold(appBar: AppBar(title: Text('自定义UI框架')), body: CustomHome()),
);
}
}
class CustomHome extends Widget {
// @override
// Element createElement() {
// return CustomElement(this);
// }
@override
Element createElement() => CustomElement(this);
}
class CustomElement extends ComponentElement {
CustomElement(Widget widget) : super(widget);
String text = "123456789";
@override
Widget build() {
Color primary = Theme.of(this).primaryColor; //1
return GestureDetector(
child: Center(
child: FlatButton(
child: Text(
text,
style: TextStyle(color: primary),
),
onPressed: () {
var t = text.split("")..shuffle();
text = t.join();
markNeedsBuild(); //点击后将该Element标记为dirty,Element将会rebuild
},
),
),
);
}
}
- 上面build方法不接收参数,这一点和在StatelessWidget和StatefulWidget中build(BuildContext)方法不同。代码中需要用到BuildContext的地方直接用 this 代替即可,如代码注释1处Theme.of(this)参数直接传this即可,因为当前对象本身就是Element实例。
- 当text发生改变时,我们调用 markNeedsBuild() 方法将当前Element标记为dirty即可,标记为dirty的Element会在下一帧中重建。实际上,State.setState()在内部也是调用的markNeedsBuild()方法。
- 上面代码中build方法返回的仍然是一个widget,这是由于Flutter框架中已经有了widget这一层,并且组件库都已经是以widget的形式提供了,如果在Flutter框架中所有组件都像示例的HomeView一样以Element形式提供,那么就可以用纯Element来构建UI了HomeView的build方法返回值类型就可以是Element了。
- 如果我们需要将上面代码在现有Flutter框架中跑起来,那么还是得提供一个“适配器”widget将HomeView结合到现有框架中,下面CustomHome就相当于“适配器”:
class CustomHome extends Widget {
@override
Element createElement() => HomeView(this)
}
现在就可以将 CustomHome 添加到widget树了,我们在一个新路由页创建它,最终效果如下如图所示:
对于问题2,答案当然也是肯定的,Flutter engine提供的dart API是原始且独立的,这个与操作系统提供的API类似,上层UI框架设计成什么样完全取决于设计者,完全可以将UI框架设计成Android风格或iOS风格,但这些事Google不会再去做,我们也没必要再去搞这一套,这是因为响应式的思想本身是很棒的,之所以提出这个问题,是因为笔者认为做与不做是一回事,但知道能不能做是另一回事,这能反映出我们对知识的理解程度。
总结
本节详细的介绍了 Element 的生命周期,以及它Widget、BuildContext的关系,也介绍了Element在Flutter UI系统中的角色和作用,我们将在下一节介绍Flutter UI系统中另一个重要的角色RenderObject。