调试、诊断子线程最直接的方式就是像调试、诊断主线程一样,但是无论是动态开启还是静态开启,子线程都不可避免地需要内置一些相关的非业务代码,本文介绍另外一种对子线程代码无侵入的调试方式,另外也介绍一下通过子线程调试主线程的方式。
1 初始化子线程的Inspector
在Node.js启动子线程的时候,会初始化Inspector。
env_->InitializeInspector(std::move(inspector_parent_handle_));
在分析InitializeInspector之前,我们先看一下inspectorparent_handle。
std::unique_ptr<inspector::ParentInspectorHandle> inspector_parent_handle_;
inspectorparent_handle是一个ParentInspectorHandle对象,这个对象是子线程和主线程通信的桥梁。我们看一下他的初始化逻辑(在主线程里执行)。
inspector_parent_handle_ = env->inspector_agent()->GetParentHandle(thread_id_, url);
调用agent的GetParentHandle获取一个ParentInspectorHandle对象。
std::unique_ptr<ParentInspectorHandle> Agent::GetParentHandle(int thread_id, const std::string& url) {return client_->getWorkerManager()->NewParentHandle(thread_id, url);}
内部其实是通过client_->getWorkerManager()对象的NewParentHandle方法获取ParentInspectorHandle对象,接下来我们看一下WorkerManager的NewParentHandle。
std::unique_ptr<ParentInspectorHandle> WorkerManager::NewParentHandle(int thread_id, const std::string& url) {bool wait = !delegates_waiting_on_start_.empty();return std::make_unique<ParentInspectorHandle>(thread_id, url, thread_, wait);}ParentInspectorHandle::ParentInspectorHandle(int id, const std::string& url,std::shared_ptr<MainThreadHandle> parent_thread,bool wait_for_connect): id_(id),url_(url),parent_thread_(parent_thread),wait_(wait_for_connect) {}
最终的架构图如下入所示。
分析完ParentInspectorHandle后继续看一下env->InitializeInspector(std::move(inspector_parent_handle))的逻辑(在子线程里执行)。
int Environment::InitializeInspector(std::unique_ptr<inspector::ParentInspectorHandle> parent_handle) {std::string inspector_path;inspector_path = parent_handle->url();inspector_agent_->SetParentHandle(std::move(parent_handle));inspector_agent_->Start(inspector_path,options_->debug_options(),inspector_host_port(),is_main_thread());}
首先把ParentInspectorHandle对象保存到agent中,然后调用agent的Start方法。
bool Agent::Start(...) {// 新建client对象client_ = std::make_shared<NodeInspectorClient>(parent_env_, is_main);// 调用agent中保存的ParentInspectorHandle对象的WorkerStartedparent_handle_->WorkerStarted(client_->getThreadHandle(), ...);}
Agent::Start创建了一个client对象,然后调用ParentInspectorHandle对象的WorkerStarted方法(刚才SetParentHandle的时候保存的),我们看一下这时候的架构图。
接着看parenthandle->WorkerStarted。
void ParentInspectorHandle::WorkerStarted(std::shared_ptr<MainThreadHandle> worker_thread, bool waiting) {std::unique_ptr<Request> request(new WorkerStartedRequest(id_, url_, worker_thread, waiting));parent_thread_->Post(std::move(request));}
WorkerStarted创建了一个WorkerStartedRequest请求,然后通过parentthread->Post提交,parentthread是MainThreadInterface对象。
void MainThreadInterface::Post(std::unique_ptr<Request> request) {Mutex::ScopedLock scoped_lock(requests_lock_);// 之前是空则需要唤醒消费者bool needs_notify = requests_.empty();// 消息入队requests_.push_back(std::move(request));if (needs_notify) {// 获取当前对象的一个弱引用std::weak_ptr<MainThreadInterface>* interface_ptr = new std::weak_ptr<MainThreadInterface>(shared_from_this());// 请求V8执行RequestInterrupt入参对应的回调isolate_->RequestInterrupt([](v8::Isolate* isolate, void* opaque) {// 把执行时传入的参数转成MainThreadInterfacestd::unique_ptr<std::weak_ptr<MainThreadInterface>> interface_ptr {static_cast<std::weak_ptr<MainThreadInterface>*>(opaque)};// 判断对象是否还有效,是则调用DispatchMessagesif (auto iface = interface_ptr->lock()) iface->DispatchMessages();}, static_cast<void*>(interface_ptr));}// 唤醒消费者incoming_message_cond_.Broadcast(scoped_lock);}
我们看看这时候的架构图。
接着看回调里执行MainThreadInterface对象DispatchMessages方法的逻辑。
void MainThreadInterface::DispatchMessages() {// 遍历请求队列requests_.swap(dispatching_message_queue_);while (!dispatching_message_queue_.empty()) {MessageQueue::value_type task;std::swap(dispatching_message_queue_.front(), task);dispatching_message_queue_.pop_front();// 执行任务函数task->Call(this);}}
task是WorkerStartedRequest对象,看一下Call方法的代码。
void Call(MainThreadInterface* thread) override {auto manager = thread->inspector_agent()->GetWorkerManager();manager->WorkerStarted(id_, info_, waiting_);}
接着调用agent的WorkerManager的WorkerStarted。
void WorkerManager::WorkerStarted(int session_id,const WorkerInfo& info,bool waiting) {children_.emplace(session_id, info);for (const auto& delegate : delegates_) {Report(delegate.second, info, waiting);}}
WorkerStarted记录了一个id和上下文,因为delegates_初始化的时候是空的,所以不会执行。至此,子线程Inspector初始化的逻辑就分析完了,结构图如下。
我们发现,和主线程不一样,主线程会启动一个WebSocket服务器接收客户端的连接请求,而子线程只是初始化了一些数据结构。下面我们看一下基于这些数据结构,主线程是如何动态开启调试子线程的。
2 主线程开启调试子线程的能力
我们可以以以下方式开启对子线程的调试。
const { Worker, workerData } = require('worker_threads');const { Session } = require('inspector');// 新建一个新的通信通道const session = new Session();session.connect();// 创建子线程const worker = new Worker('./httpServer.js', {workerData: {port: 80}});// 子线程启动成功后开启调试子线程的能力worker.on('online', () => {session.post("NodeWorker.enable",{waitForDebuggerOnStart: false},(err) => {err && console.log("NodeWorker.enable", err);});});// 防止主线程退出setInterval(() => {}, 100000);
我们先来分析一下connect函数的逻辑。
connect() {this[connectionSymbol] = new Connection((message) => this[onMessageSymbol](message));}
新建了一个Connection对象并传入一个回调函数,该回调函数在收到消息时被回调。Connection是C++层导出的对象,由模版类JSBindingsConnection实现。
template <typename ConnectionType>class JSBindingsConnection {}
我们看看导出的路逻辑。
JSBindingsConnection<Connection>::Bind(env, target);
接着看Bind。
static void Bind(Environment* env, Local<Object> target) {// class_name是ConnectionLocal<String> class_name = ConnectionType::GetClassName(env);Local<FunctionTemplate> tmpl = env->NewFunctionTemplate(JSBindingsConnection::New);tmpl->InstanceTemplate()->SetInternalFieldCount(1);tmpl->SetClassName(class_name);tmpl->Inherit(AsyncWrap::GetConstructorTemplate(env));env->SetProtoMethod(tmpl, "dispatch", JSBindingsConnection::Dispatch);env->SetProtoMethod(tmpl, "disconnect", JSBindingsConnection::Disconnect);target->Set(env->context(),class_name,tmpl->GetFunction(env->context()).ToLocalChecked()).ToChecked();}
当我们在JS层执行new Connection的时候,就会执行JSBindingsConnection::New。
static void New(const FunctionCallbackInfo<Value>& info) {Environment* env = Environment::GetCurrent(info);Local<Function> callback = info[0].As<Function>();new JSBindingsConnection(env, info.This(), callback);}
我们看看新建一个JSBindingsConnection对象时的逻辑。
JSBindingsConnection(Environment* env,Local<Object> wrap,Local<Function> callback): AsyncWrap(env, wrap, PROVIDER_INSPECTORJSBINDING),callback_(env->isolate(), callback) {Agent* inspector = env->inspector_agent();session_ = LocalConnection::Connect(inspector, std::make_unique<JSBindingsSessionDelegate>(env, this));}static std::unique_ptr<InspectorSession> Connect(Agent* inspector,std::unique_ptr<InspectorSessionDelegate> delegate) {return inspector->Connect(std::move(delegate), false);}
最终是传入了一个JSBindingsSessionDelegate对象调用Agent的Connect方法。
std::unique_ptr<InspectorSession> Agent::Connect(std::unique_ptr<InspectorSessionDelegate> delegate,bool prevent_shutdown) {int session_id = client_->connectFrontend(std::move(delegate),prevent_shutdown);// JSBindingsConnection对象的session_字段指向的对象return std::unique_ptr<InspectorSession>(new SameThreadInspectorSession(session_id, client_));}
Agent的Connect方法继续调用client_->connectFrontend。
int connectFrontend(std::unique_ptr<InspectorSessionDelegate> delegate,bool prevent_shutdown) {int session_id = next_session_id_++;channels_[session_id] = std::make_unique<ChannelImpl>(env_,client_,getWorkerManager(),std::move(delegate),getThreadHandle(),prevent_shutdown);return session_id;}
connectFrontend新建了一个ChannelImpl对象,在新建ChannelImpl时,会初始化子线程处理的逻辑。
explicit ChannelImpl(Environment* env,const std::unique_ptr<V8Inspector>& inspector,std::shared_ptr<WorkerManager> worker_manager,std::unique_ptr<InspectorSessionDelegate> delegate,std::shared_ptr<MainThreadHandle> main_thread_,bool prevent_shutdown): delegate_(std::move(delegate)), prevent_shutdown_(prevent_shutdown),retaining_context_(false) {session_ = inspector->connect(CONTEXT_GROUP_ID, this, StringView());// Node.js拓展命令的处理分发器node_dispatcher_ = std::make_unique<protocol::UberDispatcher>(this);// trace相关tracing_agent_ = std::make_unique<protocol::TracingAgent>(env, main_thread_);tracing_agent_->Wire(node_dispatcher_.get());// 处理子线程相关if (worker_manager) {worker_agent_ = std::make_unique<protocol::WorkerAgent>(worker_manager);worker_agent_->Wire(node_dispatcher_.get());}// 处理runtimeruntime_agent_ = std::make_unique<protocol::RuntimeAgent>();runtime_agent_->Wire(node_dispatcher_.get());}
我们这里只关注处理子线程相关的逻辑。看一下 workeragent->Wire。
void WorkerAgent::Wire(UberDispatcher* dispatcher) {frontend_.reset(new NodeWorker::Frontend(dispatcher->channel()));NodeWorker::Dispatcher::wire(dispatcher, this);auto manager = manager_.lock();workers_ = std::make_shared<NodeWorkers>(frontend_, manager->MainThread());}
这时候的架构图如下
接着看一下NodeWorker::Dispatcher::wire(dispatcher, this)的逻辑。
void Dispatcher::wire(UberDispatcher* uber, Backend* backend){std::unique_ptr<DispatcherImpl> dispatcher(new DispatcherImpl(uber->channel(), backend));uber->setupRedirects(dispatcher->redirects());uber->registerBackend("NodeWorker", std::move(dispatcher));}
首先新建了一个DispatcherImpl对象。
DispatcherImpl(FrontendChannel* frontendChannel, Backend* backend): DispatcherBase(frontendChannel), m_backend(backend) {m_dispatchMap["NodeWorker.sendMessageToWorker"] = &DispatcherImpl::sendMessageToWorker;m_dispatchMap["NodeWorker.enable"] = &DispatcherImpl::enable;m_dispatchMap["NodeWorker.disable"] = &DispatcherImpl::disable;m_dispatchMap["NodeWorker.detach"] = &DispatcherImpl::detach;}
除了初始化一些字段,另外了一个kv数据结构,这个是一个路由配置,后面我们会看到它的作用。新建完DispatcherImpl后又调用了uber->registerBackend(“NodeWorker”, std::move(dispatcher))注册该对象。
void UberDispatcher::registerBackend(const String& name, std::unique_ptr<protocol::DispatcherBase> dispatcher){m_dispatchers[name] = std::move(dispatcher);}
这时候的架构图如下。
我们看到这里其实是建立了一个路由体系,后面收到命令时就会根据这些路由配置进行转发,类似Node.js Express框架路由机制。这时候可以通过session的post给主线程发送NodeWorker.enable命令来开启子线程的调试。我们分析这个过程。
post(method, params, callback) {// 忽略参数处理// 保存请求对应的回调if (callback) {this[messageCallbacksSymbol].set(id, callback);}// 调用C++的dispatchthis[connectionSymbol].dispatch(JSONStringify(message));}
this[connectionSymbol]对应的是JSBindingsConnection对象。
static void Dispatch(const FunctionCallbackInfo<Value>& info) {Environment* env = Environment::GetCurrent(info);JSBindingsConnection* session;ASSIGN_OR_RETURN_UNWRAP(&session, info.Holder());if (session->session_) {session->session_->Dispatch(ToProtocolString(env->isolate(), info[0])->string());}}
session_是一个SameThreadInspectorSession对象。
void SameThreadInspectorSession::Dispatch(const v8_inspector::StringView& message) {auto client = client_.lock();client->dispatchMessageFromFrontend(session_id_, message);}void dispatchMessageFromFrontend(int session_id, const StringView& message) {channels_[session_id]->dispatchProtocolMessage(message);}
最终调用了ChannelImpl的dispatchProtocolMessage。
void dispatchProtocolMessage(const StringView& message) {std::string raw_message = protocol::StringUtil::StringViewToUtf8(message);std::unique_ptr<protocol::DictionaryValue> value =protocol::DictionaryValue::cast(protocol::StringUtil::parseMessage(raw_message, false));int call_id;std::string method;// 解析命令node_dispatcher_->parseCommand(value.get(), &call_id, &method);// 判断命令是V8内置命令还是Node.js拓展的命令if (v8_inspector::V8InspectorSession::canDispatchMethod(Utf8ToStringView(method)->string())) {session_->dispatchProtocolMessage(message);} else {node_dispatcher_->dispatch(call_id, method, std::move(value),raw_message);}}
因为NodeWorker.enable是Node.js拓展的命令,所以会走到else里面的逻辑。根据路由配置找到该命令对应的处理逻辑(NodeWorker.enable以.切分,对应两级路由)。
void UberDispatcher::dispatch(int callId, const String& in_method, std::unique_ptr<Value> parsedMessage, const ProtocolMessage& rawMessage){// 找到一级路由配置protocol::DispatcherBase* dispatcher = findDispatcher(method);std::unique_ptr<protocol::DictionaryValue> messageObject = DictionaryValue::cast(std::move(parsedMessage));// 交给一级路由处理器处理dispatcher->dispatch(callId, method, rawMessage, std::move(messageObject));}
NodeWorker.enable对应的路由处理器代码如下
void DispatcherImpl::dispatch(int callId, const String& method, const ProtocolMessage& message, std::unique_ptr<protocol::DictionaryValue> messageObject){// 查找二级路由std::unordered_map<String, CallHandler>::iterator it = m_dispatchMap.find(method);protocol::ErrorSupport errors;// 找到处理函数(this->*(it->second))(callId, method, message, std::move(messageObject), &errors);}
dispatch继续寻找命令对应的处理函数,最终找到NodeWorker.enable命令的处理函数为DispatcherImpl::enable。
void DispatcherImpl::enable(...){std::unique_ptr<DispatcherBase::WeakPtr> weak = weakPtr();DispatchResponse response = m_backend->enable(...);// 返回响应给命令(类似请求/响应模式)weak->get()->sendResponse(callId, response);}
根据架构图可以知道m_backend是WorkerAgent对象。
DispatchResponse WorkerAgent::enable(bool waitForDebuggerOnStart) {auto manager = manager_.lock();std::unique_ptr<AgentWorkerInspectorDelegate> delegate(new AgentWorkerInspectorDelegate(workers_));event_handle_ = manager->SetAutoAttach(std::move(delegate));return DispatchResponse::OK();}
继续调用WorkerManager的SetAutoAttach方法。
std::unique_ptr<WorkerManagerEventHandle> WorkerManager::SetAutoAttach(std::unique_ptr<WorkerDelegate> attach_delegate) {int id = ++next_delegate_id_;// 保存delegatedelegates_[id] = std::move(attach_delegate);const auto& delegate = delegates_[id];// 通知子线程for (const auto& worker : children_) {Report(delegate, worker.second, false);}...}
SetAutoAttach遍历子线程。
void Report(const std::unique_ptr<WorkerDelegate>& delegate,const WorkerInfo& info, bool waiting) {if (info.worker_thread)delegate->WorkerCreated(info.title, info.url, waiting, info.worker_thread);}
info是一个WorkerInfo对象,该对象是子线程初始化和主线程建立关系的数据结构。delegate是AgentWorkerInspectorDelegate对象。
void WorkerCreated(const std::string& title,const std::string& url,bool waiting,std::shared_ptr<MainThreadHandle> target) override {workers_->WorkerCreated(title, url, waiting, target);}
workers_是一个NodeWorkers对象。
void NodeWorkers::WorkerCreated(const std::string& title,const std::string& url,bool waiting,std::shared_ptr<MainThreadHandle> target) {auto frontend = frontend_.lock();std::string id = std::to_string(++next_target_id_);// 处理数据通信的delegateauto delegate = thread_->MakeDelegateThreadSafe(std::unique_ptr<InspectorSessionDelegate>(new ParentInspectorSessionDelegate(id, shared_from_this())));// 建立和子线程V8 Inspector的通信通道sessions_[id] = target->Connect(std::move(delegate), true);frontend->attachedToWorker(id, WorkerInfo(id, title, url), waiting);}
WorkerCreated建立了一条和子线程通信的通道,然后通知命令的发送方通道建立成功。这时候架构图如下。
接着看attachedToWorker。
void Frontend::attachedToWorker(const String& sessionId, std::unique_ptr<protocol::NodeWorker::WorkerInfo> workerInfo, bool waitingForDebugger){std::unique_ptr<AttachedToWorkerNotification> messageData = AttachedToWorkerNotification::create().setSessionId(sessionId).setWorkerInfo(std::move(workerInfo)).setWaitingForDebugger(waitingForDebugger).build();// 触发NodeWorker.attachedToWorkerm_frontendChannel->sendProtocolNotification(InternalResponse::createNotification("NodeWorker.attachedToWorker", std::move(messageData)));}
继续看sendProtocolNotification
void sendProtocolNotification(std::unique_ptr<Serializable> message) override {sendMessageToFrontend(message->serializeToJSON());}void sendMessageToFrontend(const StringView& message) {delegate_->SendMessageToFrontend(message);}
这里的delegate_是一个JSBindingsSessionDelegate对象。
void SendMessageToFrontend(const v8_inspector::StringView& message)override {Isolate* isolate = env_->isolate();HandleScope handle_scope(isolate);Context::Scope context_scope(env_->context());MaybeLocal<String> v8string = String::NewFromTwoByte(isolate,message.characters16(),NewStringType::kNormal, message.length());Local<Value> argument = v8string.ToLocalChecked().As<Value>();// 收到消息执行回调connection_->OnMessage(argument);}// 执行JS层回调void OnMessage(Local<Value> value) {MakeCallback(callback_.Get(env()->isolate()), 1, &value);}
JS层回调逻辑如下。
[onMessageSymbol](message) {const parsed = JSONParse(message);// 收到的消息如果是某个请求的响应,则有个id字段记录了请求对应的id,否则则触发事件if (parsed.id) {const callback = this[messageCallbacksSymbol].get(parsed.id);this[messageCallbacksSymbol].delete(parsed.id);if (callback) {callback(null, parsed.result);}} else {this.emit(parsed.method, parsed);this.emit('inspectorNotification', parsed);}}
主线程拿到Worker Session对一个的id,后续就可以通过命令NodeWorker.sendMessageToWorker加上该id和子线程通信。大致原理如下,主线程通过自己的channel和子线程的channel进行通信,从而达到控制子线程的目的。
我们分析一下NodeWorker.sendMessageToWorker命令的逻辑,对应处理函数为DispatcherImpl::sendMessageToWorker。
void DispatcherImpl::sendMessageToWorker(...){std::unique_ptr<DispatcherBase::WeakPtr> weak = weakPtr();DispatchResponse response = m_backend->sendMessageToWorker(in_message, in_sessionId);// 响应weak->get()->sendResponse(callId, response);return;}
继续分析m_backend->sendMessageToWorker。
DispatchResponse WorkerAgent::sendMessageToWorker(const String& message,const String& sessionId) {workers_->Receive(sessionId, message);return DispatchResponse::OK();}void NodeWorkers::Receive(const std::string& id, const std::string& message) {auto it = sessions_.find(id);it->second->Dispatch(Utf8ToStringView(message)->string());}
sessions_对应的是和子线程的通信的数据结构CrossThreadInspectorSession。看一下该对象的Dispatch方法。
void Dispatch(const StringView& message) override {state_.Call(&MainThreadSessionState::Dispatch,StringBuffer::create(message));}
再次调了MainThreadSessionState::Dispatch
void Dispatch(std::unique_ptr<StringBuffer> message) {session_->Dispatch(message->string());}
session_是SameThreadInspectorSession对象。继续看它的Dispatch方法。
void SameThreadInspectorSession::Dispatch(const v8_inspector::StringView& message) {auto client = client_.lock();client->dispatchMessageFromFrontend(session_id_, message);}void dispatchMessageFromFrontend(int session_id, const StringView& message) {channels_[session_id]->dispatchProtocolMessage(message);}
通过层层调用,最终拿到了一个合子线程通信的channel,dispatchProtocolMessage方法刚才已经分析过,该方法会根据命令做不同的处理,因为我们这里发送的是V8内置的命令,所以会交给V8 Inspector处理。当V8 Inspector处理完后,会通过ChannelImpl的sendResponse返回结果。
void sendResponse(int callId,std::unique_ptr<v8_inspector::StringBuffer> message) override {sendMessageToFrontend(message->string());}void sendMessageToFrontend(const StringView& message) {delegate_->SendMessageToFrontend(message);}
这里的delegate_是ParentInspectorSessionDelegate对象。
void SendMessageToFrontend(const v8_inspector::StringView& msg) override {std::string message = protocol::StringUtil::StringViewToUtf8(msg);workers_->Send(id_, message);}void NodeWorkers::Send(const std::string& id, const std::string& message) {auto frontend = frontend_.lock();if (frontend)frontend->receivedMessageFromWorker(id, message);}void Frontend::receivedMessageFromWorker(const String& sessionId, const String& message){std::unique_ptr<ReceivedMessageFromWorkerNotification> messageData = ReceivedMessageFromWorkerNotification::create().setSessionId(sessionId).setMessage(message).build();// 触发NodeWorker.receivedMessageFromWorkerm_frontendChannel->sendProtocolNotification(InternalResponse::createNotification("NodeWorker.receivedMessageFromWorker", std::move(messageData)));}
m_frontendChannel是主线程的ChannelImpl对象。
void sendProtocolNotification(std::unique_ptr<Serializable> message) override {sendMessageToFrontend(message->serializeToJSON());}void sendMessageToFrontend(const StringView& message) {delegate_->SendMessageToFrontend(message);}
delegate_是C++层传入的JSBindingsSessionDelegate对象。最终通过JSBindingsSessionDelegate对象回调JS层,之前已经分析过就不再赘述。至此,主线程就具备了控制子线程的能力,但是控制方式有很多种。
2.1 使用通用的V8命令
通过下面代码收集子线程的CPU Profile信息。
const { Worker, workerData } = require('worker_threads');const { Session } = require('inspector');const session = new Session();session.connect();let id = 1;function post(sessionId, method, params, callback) {session.post('NodeWorker.sendMessageToWorker', {sessionId,message: JSON.stringify({ id: id++, method, params })}, callback);}session.on('NodeWorker.attachedToWorker', (data) => {post(data.params.sessionId, 'Profiler.enable');post(data.params.sessionId, 'Profiler.start');// 收集一段时间后提交停止收集命令setTimeout(() => {post(data.params.sessionId, 'Profiler.stop');}, 10000)});session.on('NodeWorker.receivedMessageFromWorker', ({ params: { message }}) => {const data = JSON.parse(message);console.log(data);});const worker = new Worker('./httpServer.js', {workerData: {port: 80}});worker.on('online', () => {session.post("NodeWorker.enable",{waitForDebuggerOnStart: false}, (err) => { console.log(err, "NodeWorker.enable");});});setInterval(() => {}, 100000);
通过这种方式可以通过命令控制子线程的调试和数据收集。
2.2 在子线程中动态执行脚本
可以通过执行脚本开启子线程的WebSocket服务,像调试主线程一样。
const { Worker, workerData } = require('worker_threads');const { Session } = require('inspector');const session = new Session();session.connect();let workerSessionId;let id = 1;function post(method, params) {session.post('NodeWorker.sendMessageToWorker', {sessionId: workerSessionId,message: JSON.stringify({ id: id++, method, params })});}session.on('NodeWorker.receivedMessageFromWorker', ({ params: { message }}) => {const data = JSON.parse(message);console.log(data);});session.on('NodeWorker.attachedToWorker', (data) => {workerSessionId = data.params.sessionId;post("Runtime.evaluate", {includeCommandLineAPI: true,expression: `const inspector = process.binding('inspector');inspector.open();inspector.url();`});});const worker = new Worker('./httpServer.js', {workerData: {port: 80}});worker.on('online', () => {session.post("NodeWorker.enable",{waitForDebuggerOnStart: false}, (err) => { err && console.log("NodeWorker.enable", err);});});setInterval(() => {}, 100000);
执行上面的代码就拿到以下输出
{id: 1,result: {result: {type: 'string',value: 'ws://127.0.0.1:9229/c0ca16c8-55aa-4651-9776-fca1b27fc718'}}}
通过该地址,客户端就可以对子线程进行调试了。上面代码里使用process.binding而不是require加载inspector,因为刚才通过NodeWorker.enable命令为子线程创建了一个到子线程Inspector的channel,而JS模块里判断如果channel非空则报错Inspector已经打开。所以这里需要绕过这个限制,直接加载C++模块开启WebSocket服务器。
3 子线程调试主线程
不仅可以通过主线程调试子线程,还可以通过子线程调试主线程。Node.js在子线程暴露了connectToMainThread方法连接到主线程的Inspector(只能在work_threads中使用),实现的原理和之前分析的类似,主要是子线程连接到主线程的V8 Inspector,通过和该Inspector完成对主线程的控制。看下面一个例子。
主线程代码
const { Worker, workerData } = require('worker_threads');const http = require('http');const worker = new Worker('./worker.js', {workerData: {port: 80}});http.createServer((_, res) => {res.end('main');}).listen(8000);
worker.js代码如下
const fs = require('fs');const { workerData: { port } } = require('worker_threads');const { Session } = require('inspector');const session = new Session();session.connectToMainThread();session.post('Profiler.enable');session.post('Profiler.start');setTimeout(() => {session.post('Profiler.stop', (err, data) => {if (data.profile) {fs.writeFileSync('./profile.cpuprofile', JSON.stringify(data.profile));}});}, 5000)
