思路1:回溯
cur_path 记录当前路径中的总和- 如果在叶子节点上出现了
cur_sum == target_sum,就将cur_path放到fit_path当中。否则就进行回溯操作。 - 回溯的“回”如何实现?
cur_path.pop_back()
代码1:
 
/** * Definition for a binary tree node. * struct TreeNode { *     int val; *     TreeNode *left; *     TreeNode *right; *     TreeNode() : val(0), left(nullptr), right(nullptr) {} *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} * }; */class Solution {public:    vector<vector<int>> fit_path;    vector<int> cur_path;    void traceBack(TreeNode* root, int pre_sum, int targetSum) {        if (!root) {            return;        }        int cur_sum = pre_sum + root->val;        cur_path.push_back(root->val);        if (!root->left && !root->right) {            if (cur_sum == targetSum) {                fit_path.push_back(cur_path);            }        }        traceBack(root->left, cur_sum, targetSum);        traceBack(root->right, cur_sum, targetSum);        // 回溯的“回”操作        cur_path.pop_back();    }    vector<vector<int>> pathSum(TreeNode* root, int targetSum) {        traceBack(root, 0, targetSum);        return fit_path;    }};
思路2:BFS + parents哈希表记录路径
- 常见的BFS,注意去维护
pair结构,这样可以记录当前节点的路径和。儿子不知道爹是谁,但是爹可以提前把信息传给儿子,体现在代码中就是q.push({cur_node->left, cur_sum + cur_node->left->val}); - 此题可以用哈希表记录父亲节点,因为在BFS的时候,可以传递父子关系,用哈希表记录下来。寻找的时候,通过关系不断往上找,代码即是:
 
//unordered_map<TreeNode*, TreeNode*> rec_parentswhile (cur_node) {        cur_path.push_back(cur_node->val);        cur_node = rec_parents[cur_node];}
代码2:
class Solution {
public:
    vector<int> getPath(TreeNode* cur_node, unordered_map<TreeNode*, TreeNode*> rec_parents) {
        vector<int> cur_path;
        while (cur_node) {
            cur_path.push_back(cur_node->val);
            cur_node = rec_parents[cur_node];
        }
        reverse(cur_path.begin(), cur_path.end());
        return cur_path;
    }
    vector<vector<int>> pathSum(TreeNode* root, int targetSum) {
        unordered_map<TreeNode*, TreeNode*> rec_parents;
        vector<vector<int>> all_path;
        if (!root) {
            return all_path;
        }
        queue<pair<TreeNode*, int>> q;
        q.push({root, root->val});
        while (!q.empty()) {
            TreeNode* cur_node = q.front().first;
            int cur_sum = q.front().second;
            q.pop();
            // 如果是叶子节点
            if (!cur_node->left && !cur_node->right && cur_sum == targetSum) {
                all_path.push_back(getPath(cur_node, rec_parents));
            }
            if (cur_node->left) {
                q.push({cur_node->left, cur_sum + cur_node->left->val});
                rec_parents[cur_node->left] = cur_node;
            }
            if (cur_node->right) {
                q.push({cur_node->right, cur_sum + cur_node->right->val});
                rec_parents[cur_node->right] = cur_node;
            }
        }
        return all_path;
    }
};